一种基于CNN和ViT的柑橘黄龙病害识别方法

    公开(公告)号:CN118470422B

    公开(公告)日:2025-04-01

    申请号:CN202410654325.5

    申请日:2024-05-24

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于CNN和ViT的柑橘黄龙病害识别方法,包括:柑橘黄龙病害图像样本的获取并进行预处理;组成数据集,将数据集划分为训练集、验证集和测试集;构建柑橘黄龙病害图像识别模型;对训练集进行预处理,将预处理后的训练集输入柑橘黄龙病害识别模型中进行训练;获取待检测的柑橘黄龙病害图像并进行预处理,输入训练后的柑橘黄龙病害识别模型,得到柑橘黄龙病害识别结果。本发明通过将CNN分支模型连接ViT分支模型,实现对柑橘黄龙图像病害的准确识别;使用三个级联的残差模块,相较于传统ResNet参数量大大减少,结合轻量化注意力模块使得在参数量大幅下降的同时,提高了模型精度,有效地减轻了背景干扰,提升了病虫害的识别性能。

    一种基于CNN和ViT的柑橘黄龙病害识别方法

    公开(公告)号:CN118470422A

    公开(公告)日:2024-08-09

    申请号:CN202410654325.5

    申请日:2024-05-24

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于CNN和ViT的柑橘黄龙病害识别方法,包括:柑橘黄龙病害图像样本的获取并进行预处理;组成数据集,将数据集划分为训练集、验证集和测试集;构建柑橘黄龙病害图像识别模型;对训练集进行预处理,将预处理后的训练集输入柑橘黄龙病害识别模型中进行训练;获取待检测的柑橘黄龙病害图像并进行预处理,输入训练后的柑橘黄龙病害识别模型,得到柑橘黄龙病害识别结果。本发明通过将CNN分支模型连接ViT分支模型,实现对柑橘黄龙图像病害的准确识别;使用三个级联的残差模块,相较于传统ResNet参数量大大减少,结合轻量化注意力模块使得在参数量大幅下降的同时,提高了模型精度,有效地减轻了背景干扰,提升了病虫害的识别性能。

Patent Agency Ranking