-
公开(公告)号:CN118364906B
公开(公告)日:2024-08-23
申请号:CN202410792134.5
申请日:2024-06-19
Applicant: 安徽大学
IPC: G06N5/022 , G06N5/02 , G06N3/042 , G06N3/045 , G06N3/0895 , G06F18/214 , G06F18/22
Abstract: 本发明属于人工智能技术领域,具体涉及一种应用可信度感知迭代训练策略实现实体对齐的方法及其对应的服务推荐系统。该方案的核心包括一个关系感知交互图注意力网络,以及一个基于可信度感知迭代训练的自监督机制。其中,图注意力网络用于提取知识图谱中实体和关系的嵌入表示,并可以聚合实体特征和关系特征,并利用注意力机制降低噪声对实体嵌入的影响。在自监督机制中,先由图注意力网络分别提取出两个待对齐处理的知识图谱的嵌入表示,然后不断评估两个知识图谱中各组预对齐实体对的可信度,并将可信度高的实体对逐渐添加为伪对齐种子。本发明克服了现有方案需要依赖大量人工标注的伪对齐种子且易受噪声影响进而导致模型精度不足的缺陷。
-
公开(公告)号:CN118364906A
公开(公告)日:2024-07-19
申请号:CN202410792134.5
申请日:2024-06-19
Applicant: 安徽大学
IPC: G06N5/022 , G06N5/02 , G06N3/042 , G06N3/045 , G06N3/0895 , G06F18/214 , G06F18/22
Abstract: 本发明属于人工智能技术领域,具体涉及一种应用可信度感知迭代训练策略实现实体对齐的方法及其对应的服务推荐系统。该方案的核心包括一个关系感知交互图注意力网络,以及一个基于可信度感知迭代训练的自监督机制。其中,图注意力网络用于提取知识图谱中实体和关系的嵌入表示,并可以聚合实体特征和关系特征,并利用注意力机制降低噪声对实体嵌入的影响。在自监督机制中,先由图注意力网络分别提取出两个待对齐处理的知识图谱的嵌入表示,然后不断评估两个知识图谱中各组预对齐实体对的可信度,并将可信度高的实体对逐渐添加为伪对齐种子。本发明克服了现有方案需要依赖大量人工标注的伪对齐种子且易受噪声影响进而导致模型精度不足的缺陷。
-