一种基于自适应置信度图卷积网络的步态识别方法

    公开(公告)号:CN112434655B

    公开(公告)日:2022-11-08

    申请号:CN202011432129.1

    申请日:2020-12-07

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于自适应置信度图卷积网络的步态识别方法,其步骤包括:1获取包含人体姿态信息的数据集;2建立自适应置信度图卷积网络模型;3离线训练建立的自适应置信度图卷积网络模型;4利用建立好的模型实现预测,以达到步态识别的目的。本发明能通过自适应置信度图卷积网络姿态数据中提取步态特征并减少姿态数据中噪声的影响,从而能提高步态识别的准确率,同时改善现有基于外观的步态识别算法对外观变化敏感的缺点。

    一种基于自适应置信度图卷积网络的步态识别方法

    公开(公告)号:CN112434655A

    公开(公告)日:2021-03-02

    申请号:CN202011432129.1

    申请日:2020-12-07

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于自适应置信度图卷积网络的步态识别方法,其步骤包括:1获取包含人体姿态信息的数据集;2建立自适应置信度图卷积网络模型;3离线训练建立的自适应置信度图卷积网络模型;4利用建立好的模型实现预测,以达到步态识别的目的。本发明能通过自适应置信度图卷积网络姿态数据中提取步态特征并减少姿态数据中噪声的影响,从而能提高步态识别的准确率,同时改善现有基于外观的步态识别算法对外观变化敏感的缺点。

    基于文本-区域匹配的带有缺失标签场景下的多标签图像识别方法

    公开(公告)号:CN119399505A

    公开(公告)日:2025-02-07

    申请号:CN202411529792.1

    申请日:2024-10-30

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于文本‑区域匹配的带有缺失标签场景下的多标签图像识别方法,使用预训练视觉‑语言模型作为特征提取器,对视觉特征和查询向量进行交叉注意力运算生成区域级显著性图;利用多层感知机生成查询级特征,通过区域级显著性图对视觉特征进行聚合运算生成区域级特征表示;然后进行知识蒸馏过程,将区域级特征表示的知识迁移到查询级特征表示上,还基于多模态对比学习方法,利用记忆块视觉原型和文本原型进行存储以及对比学习,使得相同特定类别特征彼此趋近,不同特定类别特征适当拉远,从而使原模型建立起更好的类内和类间关系,有效地提高了带有缺失标签场景下的多标签图像识别的准确性。

Patent Agency Ranking