-
公开(公告)号:CN114672858B
公开(公告)日:2023-09-19
申请号:CN202210448354.7
申请日:2022-04-27
Applicant: 安徽大学
Abstract: 本发明公开了一种增强拉曼散射活性的纳米金薄膜及其制备方法,所述增强拉曼散射活性的纳米金薄膜包括导电衬底和堆叠在导电衬底上的三维多层金纳米颗粒膜;所述三维多层金纳米颗粒膜的厚度为0.1‑2μm,金纳米颗粒为类球形多面体结构,颗粒粒径为150‑400nm。本发明提供的一种增强拉曼散射活性的纳米金薄膜及其制备方法,通过在导电衬底上附着金籽晶后,利用金籽晶为成核点,通过电沉积的方法在导电衬底上培育形成三维多层金纳米颗粒膜,该金纳米颗粒膜通过大粒径的金纳米颗粒相互堆叠组装形成,结构单一,且具有众多的表面增强拉曼散射(SERS)热点,有利于保证SERS信号的均匀性和高检测灵敏度。
-
公开(公告)号:CN113668029B
公开(公告)日:2023-03-10
申请号:CN202110995846.3
申请日:2021-08-27
Applicant: 安徽大学
Abstract: 本发明涉及一种粗糙金纳米颗粒构成的薄膜,其主要由位于导电衬底上的众多大的金纳米颗粒以及包覆在大的金纳米颗粒表面上的众多小的金纳米颗粒,所述众多大的金纳米颗粒相堆叠成层;所述小的金纳米颗粒粒径15‑80nm,所述大的金纳米颗粒粒径200‑900nm。粗糙金纳米颗粒组成的薄膜结构由2至4层表面凹凸不平的金纳米颗粒叠加连接形成,这种结构使得其间具有更多的间隙,能够提供众多的SERS热点,而且这种薄膜结构具有良好的结构均匀性,为SERS信号的均匀性提供了可靠的保障,从而使目的产物的SERS灵敏度和信号均匀性均得到显著提升。其可以作为表面增强拉曼散射的活性基底用于检测有机染料。
-
公开(公告)号:CN113668029A
公开(公告)日:2021-11-19
申请号:CN202110995846.3
申请日:2021-08-27
Applicant: 安徽大学
Abstract: 本发明涉及一种粗糙金纳米颗粒构成的薄膜,其主要由位于导电衬底上的众多大的金纳米颗粒以及包覆在大的金纳米颗粒表面上的众多小的金纳米颗粒,所述众多大的金纳米颗粒相堆叠成层;所述小的金纳米颗粒粒径15‑80nm,所述大的金纳米颗粒粒径200‑900nm。粗糙金纳米颗粒组成的薄膜结构由2至4层表面凹凸不平的金纳米颗粒叠加连接形成,这种结构使得其间具有更多的间隙,能够提供众多的SERS热点,而且这种薄膜结构具有良好的结构均匀性,为SERS信号的均匀性提供了可靠的保障,从而使目的产物的SERS灵敏度和信号均匀性均得到显著提升。其可以作为表面增强拉曼散射的活性基底用于检测有机染料。
-
公开(公告)号:CN113278924B
公开(公告)日:2023-04-25
申请号:CN202110474957.X
申请日:2021-04-29
Applicant: 安徽大学
IPC: C23C14/18 , C23C14/35 , C23C16/40 , C23C16/455 , C23C28/00 , C25D3/46 , G01N21/65 , B82Y15/00 , B82Y30/00 , B82Y40/00
Abstract: 本发明公开了一种银纳米柱‑多孔银纳米管‑花瓣状银纳米凸起阵列及其制备方法和用途。该阵列包括位于银纳米膜上的大量银纳米柱‑多孔银纳米管‑花瓣状银纳米凸起结构单元,该结构单元由银纳米柱、多孔银纳米管和花瓣状银纳米凸起组成,花瓣状银纳米凸起由6个相连成环的银纳米颗粒组成;制备方法包括在通孔氧化铝模板上表面磁控溅射银,在氧化铝模板孔道顶端形成岛状颗粒膜,再在氧化铝模板上原子层沉积氧化铝薄膜、磁控溅射银膜,置于银电解液中沉积形成银纳米柱,去除氧化铝模板和氧化铝薄膜即制得。该阵列可作为表面增强拉曼散射(SERS)的活性基底来测量其上附着的痕量有机物,能检测出浓度低至10‑14mol/L的罗丹明6G,SERS信号的均匀性和检测灵敏度高。
-
公开(公告)号:CN115090872A
公开(公告)日:2022-09-23
申请号:CN202210691332.3
申请日:2022-06-17
Applicant: 安徽大学
IPC: B22F1/07 , B22F1/054 , B22F1/065 , C25D3/46 , C25D5/00 , C25D5/18 , B22F9/24 , G01N21/65 , B82Y15/00 , B82Y30/00 , B82Y40/00
Abstract: 本发明公开了一种银微纳结构及其制备方法和用途。该微纳结构由位于导电衬底表面上的银微米半球以及半球表面生长的银主干、分支结构和生长在主干、分支上的银纳米片组成;该银微米半球由银纳米颗粒以球心为中心向导电衬底上的各个方向辐射堆砌组成,所述银纳米颗粒的尺寸为10‑20nm;该银微纳结构的制备方法包括在导电衬底上电沉积制备银微米半球,然后在微米半球表面电沉积生长由银主干、分支以及银纳米片组成的微纳结构。该银微纳结构具有抗团聚、比表面积大等优点,该结构可作为表面增强拉曼散射(SERS)的活性基底来测量其上附着的痕量有机物,能检测出浓度低至10‑16mol/L的罗丹明6G。
-
公开(公告)号:CN113279027A
公开(公告)日:2021-08-20
申请号:CN202110471669.9
申请日:2021-04-29
Applicant: 安徽大学
Abstract: 本发明公开了一种银微米颗粒阵列及其制备方法和用途。该银微米颗粒阵列由导电衬底和银微米颗粒组成,其中银微米颗粒表面为密集的银纳米片、粗糙纳米棒和树枝晶等结构;制备方法为电化学沉积法,具体步骤为:先将硝酸银粉末、聚乙烯吡咯烷酮粉末、四氧化三铁粉末和柠檬酸粉末溶解于水中,并加热至30‑40℃后保温,得到电解液,氧化铟锡导电衬底作为阴极、石墨片作为阳极置于电解液中电沉积,得到其上覆有银微米颗粒的导电衬底,之后,将覆有银微颗粒的导电玻璃取出,用去离子水清洗数次,制得目的产物。制得的银微米颗粒阵列极易于广泛地作为商业化表面增强拉曼活性基底,使用激光拉曼光谱仪测量其上附着的罗丹明6G或其他化学分子。
-
公开(公告)号:CN114956600B
公开(公告)日:2024-02-20
申请号:CN202210596989.1
申请日:2022-05-30
Applicant: 安徽大学
Abstract: 本发明公开了一种银纳米片@氧化锌纳米棒阵列及其制备方法和用途。氧化锌生长在导电衬底上,银纳米片修饰在氧化锌纳米棒的表面。其中,氧化锌纳米棒的长度为0.8‑2μm,直径为200‑500nm,银纳米片厚为5‑30nm,片形状不规则,片尺寸为100‑500nm;制备方法为:先在氧气气氛中利用等离子体轰击导电玻璃,增加其表面亲水性,然后在70‑90℃水浴条件下,在置于锌氨溶液中的导电玻璃表面生长氧化锌纳米棒阵列;然后利用银镜反应,在氧化锌纳米棒表面生长银纳米颗粒;之后,利用银电解液,在氧化锌纳米棒阵列表面电沉积银纳米片,制得目标产物。该产物具有较高的表面增强拉曼散射(SERS)灵敏度,能够广泛应用于SERS检测,例如快速检测罗丹明6G。
-
公开(公告)号:CN116655930A
公开(公告)日:2023-08-29
申请号:CN202310468585.9
申请日:2023-04-27
Applicant: 安徽大学
Abstract: 本发明公开了一种基于卟啉的Al‑MOF材料,所述基于卟啉的Al‑MOF材料呈梭形柱状,由多层纳米片堆叠成梭形柱状。本发明还公开了上述基于卟啉的Al‑MOF材料的制备方法及其在比率型荧光传感器中的应用。本发明还公开一种比率型荧光传感器,所述比率型荧光传感器为含有上述基于卟啉的Al‑MOF材料的溶液,溶液的pH为7.3‑7.5。本发明还公开了一种检测铜离子的方法。本发明所述基于卟啉的Al‑MOF材料具有独特的微观结构,其用作比率型荧光传感器可以实现对铜离子的特异性识别,且灵敏度高、抗干扰能力好、稳定性好;并且本发明制备方法简单,易于操作,耗时间较短。
-
公开(公告)号:CN113278923B
公开(公告)日:2023-05-23
申请号:CN202110472939.8
申请日:2021-04-29
Applicant: 安徽大学
Abstract: 本发明公开了一种银纳米柱‑银纳米管复合结构阵列及其制备方法和用途。银纳米柱‑银纳米管复合结构阵列由位于银纳米膜上的大量银纳米柱‑银纳米管复合结构单元组成,每个结构单元由银纳米柱、套设在银纳米柱外的银纳米管组成;该产品的制备方法为先在通孔氧化铝模板的一面磁控溅射银,在氧化铝模板孔道顶端形成银纳米管;再在氧化铝模板上原子层沉积氧化铝薄膜、溅射银膜,然后浸入电解液,在氧化铝模板孔道内电沉积银纳米柱,再置于碱溶液中溶解去除氧化铝模板和氧化铝薄膜即可制得。该产品可作为表面增强拉曼散射(SERS)的活性基底来测量其上附着的痕量有机物,能检测出浓度低至10‑13mol/L的罗丹明6G,SERS信号的均匀性和检测灵敏度高。
-
公开(公告)号:CN114216945A
公开(公告)日:2022-03-22
申请号:CN202111523529.8
申请日:2021-12-14
Applicant: 安徽大学
IPC: G01N27/327 , G01N27/48 , C25D9/04 , C25D7/00 , C01G53/04
Abstract: 本发明公开了一种镍铁氧化物复合材料的制备方法,通过电沉积法将镍铁氧化物沉积到泡沫镍上,具体流程包括以下步骤,S1,将厚度为0.5mm的泡沫镍裁剪为1cm×2cm的标准长方形,先后在去离子水和无水乙醇中超声处理5~15min,然后放置于烘箱中烘干;S2,将镍盐和铁盐加入到60mL去离子水中,通过磁力搅拌器搅拌均匀;S3,采用三电极体系进行电沉积,电化学工作站选择恒电流模式,沉积一段时间后将产品从溶液中取出,所得产品置于烘箱中烘干,冷却至室温。本发明所述的一种镍铁氧化物复合材料,用本发明提供的镍铁氧化物复合材料制备的酶葡萄糖传感器,具有生产成本低、制作流程简单、使用精度高、稳定性好、检测灵敏度高的优点,具有广阔的应用前景。
-
-
-
-
-
-
-
-
-