一种多生育期小麦倒伏面积提取方法

    公开(公告)号:CN117152234A

    公开(公告)日:2023-12-01

    申请号:CN202311119430.0

    申请日:2023-09-01

    Applicant: 安徽大学

    Abstract: 本发明涉及一种多生育期小麦倒伏面积提取方法,包括:进行数据采集;进行图像预处理;进行数据扩增;对数据扩增后的图像进行筛选,剔除不存在倒伏的图像,在剔除后以4:1的比例将图像随机划分为训练集和验证集;对Mask2Former网络模型进行改进,将训练集输入改进的Mask2Former网络模型进行训练,筛选得到最优分割模型;将待检测的小麦图像输入最优分割模型中,计算出小麦倒伏的实际面积。本发明收集不同生育阶段的小麦倒伏数据,应用数据增强来模拟田间复杂自然环境,以提高模型的鲁棒性与泛化性。引入层级交互特征金字塔网络HI‑FPN改进了Mask2Former网络模型,实现了多尺度特征的提取与融合,提高倒伏区域分割的准确性,对小麦倒伏面积进行精确计算。

    一种大型虫情监测回收方法及装置

    公开(公告)号:CN117063903A

    公开(公告)日:2023-11-17

    申请号:CN202311223649.5

    申请日:2023-09-21

    Applicant: 安徽大学

    Abstract: 本发明涉及一种大型虫情监测回收方法,包括下列顺序的步骤:打开黑光引虫灯管和加热仓的上仓门,吸引虫子来到加热仓;关闭加热仓的上仓门和下仓门,执行加热杀虫工作,杀死虫子后,打开下仓门,加热烘干的虫子落到圆盘上摆放;位于圆盘正上方的相机对圆盘上的虫子进行拍照;拍摄的照片分别存储本地和上传云端进行识别,通过基于深度学习的图像识别模型,对图片内容进行依次识别;启动电刷对圆盘上的害虫进行清扫和回收。本发明还公开了一种大型虫情监测回收装置。本发明基于硬件、软件、电子、网络实现了自动化、智能化的虫情测报设备,为农业、林业等各个领域提供虫情的监测功能;实现软硬件的自动化,这使得虫情测报灯的工作更高效。

Patent Agency Ranking