-
公开(公告)号:CN113673780A
公开(公告)日:2021-11-19
申请号:CN202111027632.3
申请日:2021-09-02
Applicant: 大连理工大学
Abstract: 本发明涉及一种基于深度集成学习的交通稀疏需求预测方法,属于深度集成学习与交通稀疏需求预测的交叉技术应用领域。预测方法包括:采用六边形网格集计城市空间交通需求数据,通过设置最小需求阈值的方式获取不同稀疏度的欠采样子集;在各子集上训练相应的卷积长短期记忆交通需求预测子模型并识别各子模型的最优预测区间,进一步构建深度集成学习框架来融合各子模型的区间优点;对深度集成框架进行训练,并将训练好的模型用于实时预测。该方法融合了各稀疏条件下子模型的不同预测偏好,有效提升了在全体数据集上的预测精度。
-
公开(公告)号:CN112613630B
公开(公告)日:2022-09-20
申请号:CN202110007677.8
申请日:2021-01-05
Applicant: 大连理工大学
Abstract: 本发明涉及一种融合多尺度时空统计信息的短时交通需求预测方法,属于深度学习与交通需求预测的交叉技术应用领域。预测方法包括:提出了多尺度六边形分区的城市交通需求统计区域多尺度划分方法,并计算各区域在不同时空尺度下的交通需求量;构建融合多尺度六边形出行需求时空信息的卷积长短期记忆交通需求预测模型;根据历史数据对模型进行训练,并用训练好的模型对各区域的需求进行实时预测。该方法将多尺度下六边形分区与深度学习相结合,捕捉区域多尺度时空需求信息,有效提升预测精度。
-
公开(公告)号:CN113673780B
公开(公告)日:2022-09-06
申请号:CN202111027632.3
申请日:2021-09-02
Applicant: 大连理工大学
Abstract: 本发明涉及一种基于深度集成学习的交通稀疏需求预测方法,属于深度集成学习与交通稀疏需求预测的交叉技术应用领域。预测方法包括:采用六边形网格集计城市空间交通需求数据,通过设置最小需求阈值的方式获取不同稀疏度的欠采样子集;在各子集上训练相应的卷积长短期记忆交通需求预测子模型并识别各子模型的最优预测区间,进一步构建深度集成学习框架来融合各子模型的区间优点;对深度集成框架进行训练,并将训练好的模型用于实时预测。该方法融合了各稀疏条件下子模型的不同预测偏好,有效提升了在全体数据集上的预测精度。
-
公开(公告)号:CN112613630A
公开(公告)日:2021-04-06
申请号:CN202110007677.8
申请日:2021-01-05
Applicant: 大连理工大学
Abstract: 本发明涉及一种融合多尺度时空统计信息的短时交通需求预测方法,属于深度学习与交通需求预测的交叉技术应用领域。预测方法包括:提出了多尺度六边形分区的城市交通需求统计区域多尺度划分方法,并计算各区域在不同时空尺度下的交通需求量;构建融合多尺度六边形出行需求时空信息的卷积长短期记忆交通需求预测模型;根据历史数据对模型进行训练,并用训练好的模型对各区域的需求进行实时预测。该方法将多尺度下六边形分区与深度学习相结合,捕捉区域多尺度时空需求信息,有效提升预测精度。
-
-
-