一种基于多视角图模型的餐具检测和识别方法

    公开(公告)号:CN107239777B

    公开(公告)日:2021-06-15

    申请号:CN201710336657.9

    申请日:2017-05-13

    Abstract: 本发明公开了一种基于多视角图模型的餐具检测和识别方法,利用多视角图模型的学习框架将餐具检测和识别结合成统一的框架,首先利用多视角图模型检测图像中的餐具,然后利用多视角特征融合学习新特征进行餐具的识别。采用多视角图模型进行图像的餐具检测,利用超像素点在多个视角下的特征构建图模型,然后再学习每个超像素点是餐具所在位置的置信度,从而更准确的检测出餐具。采用多视角融合算法进行特征融合,构建更强区分性的特征,有利于提高识别率。在多视角图模型构建中,利用指数型权值参数,避免出现多视角的权值系数为零,使得各个视角特征能够相互补充。

    一种基于多视角图模型的餐具检测和识别方法

    公开(公告)号:CN107239777A

    公开(公告)日:2017-10-10

    申请号:CN201710336657.9

    申请日:2017-05-13

    CPC classification number: G06K9/3241 G06K9/6256 G06K9/6269

    Abstract: 本发明公开了一种基于多视角图模型的餐具检测和识别方法,利用多视角图模型的学习框架将餐具检测和识别结合成统一的框架,首先利用多视角图模型检测图像中的餐具,然后利用多视角特征融合学习新特征进行餐具的识别。采用多视角图模型进行图像的餐具检测,利用超像素点在多个视角下的特征构建图模型,然后再学习每个超像素点是餐具所在位置的置信度,从而更准确的检测出餐具。采用多视角融合算法进行特征融合,构建更强区分性的特征,有利于提高识别率。在多视角图模型构建中,利用指数型权值参数,避免出现多视角的权值系数为零,使得各个视角特征能够相互补充。

Patent Agency Ranking