-
公开(公告)号:CN114913328B
公开(公告)日:2024-07-26
申请号:CN202210537471.0
申请日:2022-05-18
Applicant: 大连理工大学
IPC: G06V10/26 , G06V10/44 , G06V10/42 , G06V10/80 , G06V10/82 , G06N7/01 , G06N3/0464 , G06N3/0455 , G06N3/0895 , G06N3/096
Abstract: 本发明属于人工智能与计算机视觉领域,公开了一种基于贝叶斯深度多任务学习的语义分割与深度预测方法。该方法将语义分割与深度预测任务视为多任务,利用深度学习方法解决多模态问题,通过预训练处理的主干网络生成包含多个尺度的原始共享特征,并利用提出的贝叶斯多通道交流单元与任务共享单元实现尺度与任务特征之间的交流;最后通过设计的贝叶斯多模态蒸馏机制输出语义分割与深度预测的结果。本发明方法核心在于设计了多尺度与多任务交流机制,并引入贝叶斯深度学习设计了贝叶斯门控机制,并显著提高语义分割与深度预测任务的精度。本发明作为一种基于贝叶斯深度多任务学习的语义分割与深度预测方法,可广泛应用于自动驾驶以及智能机器人领域。
-
公开(公告)号:CN114913328A
公开(公告)日:2022-08-16
申请号:CN202210537471.0
申请日:2022-05-18
Applicant: 大连理工大学
Abstract: 本发明属于人工智能与计算机视觉领域,公开了一种基于贝叶斯深度多任务学习的语义分割与深度预测方法。该方法将语义分割与深度预测任务视为多任务,利用深度学习方法解决多模态问题,通过预训练处理的主干网络生成包含多个尺度的原始共享特征,并利用提出的贝叶斯多通道交流单元与任务共享单元实现尺度与任务特征之间的交流;最后通过设计的贝叶斯多模态蒸馏机制输出语义分割与深度预测的结果。本发明方法核心在于设计了多尺度与多任务交流机制,并引入贝叶斯深度学习设计了贝叶斯门控机制,并显著提高语义分割与深度预测任务的精度。本发明作为一种基于贝叶斯深度多任务学习的语义分割与深度预测方法,可广泛应用于自动驾驶以及智能机器人领域。
-