基于文本特征提取和不平衡处理策略的Bug报告严重程度识别方法

    公开(公告)号:CN109934286B

    公开(公告)日:2022-11-11

    申请号:CN201910183106.2

    申请日:2019-03-12

    Abstract: 本发明公开了一种基于文本特征提取和不平衡策略的识别Bug报告严重程度的方法,该方法通过对bug报告数据集进行不平衡及基于遗传算法的文本特征提取操作,生成的分类模型对新提交的bug报告进行分类时没有偏向,拟合趋于平衡,避免了分类时的局限性;经过提取操作,可以实现特征与实例的同时提取,得到规模更小且质量更高的数据集,提高了bug报告严重程度识别的准确率,节省了bug严重程度识别的时间成本和人力成本,提升了工作效率,方便开发者优先处理严重程度更高的bug报告。

    基于文本特征提取和不平衡处理策略的Bug报告严重程度识别方法

    公开(公告)号:CN109934286A

    公开(公告)日:2019-06-25

    申请号:CN201910183106.2

    申请日:2019-03-12

    Abstract: 本发明公开了一种基于文本特征提取和不平衡策略的识别Bug报告严重程度的方法,该方法通过对bug报告数据集进行不平衡及基于遗传算法的文本特征提取操作,生成的分类模型对新提交的bug报告进行分类时没有偏向,拟合趋于平衡,避免了分类时的局限性;经过提取操作,可以实现特征与实例的同时提取,得到规模更小且质量更高的数据集,提高了bug报告严重程度识别的准确率,节省了bug严重程度识别的时间成本和人力成本,提升了工作效率,方便开发者优先处理严重程度更高的bug报告。

    一种软件bug报告分类系统及分类方法

    公开(公告)号:CN109213865A

    公开(公告)日:2019-01-15

    申请号:CN201811076509.9

    申请日:2018-09-14

    Abstract: 本发明公开了一种软件bug报告分类系统及分类方法,所述系统包括训练部分和测试部分,所述训练部分包括:数据集获取模块、数据约简模块和不平衡数据集处理模块;所述测试部分包括:bug报告输入模块和结果分类输出模块。所述分类方法的主要步骤包括:使用数据约简算法来处理数据,用RSMOTE方法处理不平衡数据集,用获得的平衡数据集训练分类器,以及用Choquet模糊积分来集成多个已经训练过的分类器对bug报告的结果进行分类。本发明通过特征选择和实例选择结合使用的办法,减少了样本维度和单词维度上的数据规模,通过使用基于Choquet模糊积分的集成训练方法,提高了对bug报告严重性的识别程度,同时避免了随机采样的不确定性。

    问答网站中问题回答者推荐方法

    公开(公告)号:CN109408726B

    公开(公告)日:2022-02-08

    申请号:CN201811333596.1

    申请日:2018-11-09

    Abstract: 本发明公开了一种问答网站中问题回答者推荐方法,具有如下步骤:推荐系统接收提问者信息以及问题信息,提取问答网站的数据;构建用户间关系的网络图;将网络图利用Weighted LeaderRank算法得出用户排名;对所有用户形成一个社团分类;根据用户排名和社团分类,确定出每个社团中的用户排名;根据提问者用户在问答网站中的id在推荐系统中确认所属社团,并且推荐给该社团中活跃度为α以上的用户,由其来解答问题,然后将答案反馈给提问者用户。本发明通过对提问者进行社团划分,然后推荐给与其相同社团的用户,能够缩短问题解决的时间,提高问题回答的准确性和质量,促进技术性问答网站中问题的解决。

    一种基于迁移学习和特征提取的Bug报告严重程度识别方法

    公开(公告)号:CN109614489A

    公开(公告)日:2019-04-12

    申请号:CN201811528863.0

    申请日:2018-12-13

    Abstract: 本发明公开了一种基于迁移学习和特征提取的Bug报告严重程度识别方法,通过将向量化表示的Bugzilla Bug报告信息作为知识库;并使用粗糙集特征提取方法对向量化表示的文本矩阵进行特征提取,将提取的特征作为迁移学习的最终知识库,用于识别Android Bug报告的严重程度。通过上述方法可以实现Android Bug报告管理系统中Bug报告严重程度的自动预测,节省了Bug报告严重程度预测所需的时间成本和人力成本,提升了工作效率。

    问答网站中问题回答者推荐方法

    公开(公告)号:CN109408726A

    公开(公告)日:2019-03-01

    申请号:CN201811333596.1

    申请日:2018-11-09

    Abstract: 本发明公开了一种问答网站中问题回答者推荐方法,具有如下步骤:推荐系统接收提问者信息以及问题信息,提取问答网站的数据;构建用户间关系的网络图;将网络图利用Weighted LeaderRank算法得出用户排名;对所有用户形成一个社团分类;根据用户排名和社团分类,确定出每个社团中的用户排名;根据提问者用户在问答网站中的id在推荐系统中确认所属社团,并且推荐给该社团中活跃度为α以上的用户,由其来解答问题,然后将答案反馈给提问者用户。本发明通过对提问者进行社团划分,然后推荐给与其相同社团的用户,能够缩短问题解决的时间,提高问题回答的准确性和质量,促进技术性问答网站中问题的解决。

    一种基于迁移学习和特征提取的Bug报告严重程度识别方法

    公开(公告)号:CN109614489B

    公开(公告)日:2022-11-18

    申请号:CN201811528863.0

    申请日:2018-12-13

    Abstract: 本发明公开了一种基于迁移学习和特征提取的Bug报告严重程度识别方法,通过将向量化表示的Bugzilla Bug报告信息作为知识库;并使用粗糙集特征提取方法对向量化表示的文本矩阵进行特征提取,将提取的特征作为迁移学习的最终知识库,用于识别Android Bug报告的严重程度。通过上述方法可以实现Android Bug报告管理系统中Bug报告严重程度的自动预测,节省了Bug报告严重程度预测所需的时间成本和人力成本,提升了工作效率。

    一种Web应用程序的协同测试方法

    公开(公告)号:CN109240930A

    公开(公告)日:2019-01-18

    申请号:CN201811095704.6

    申请日:2018-09-19

    Abstract: 本发明公开了一种Web应用程序的协同测试方法,包括:由请求者将需要进行测试的Web应用程序测试任务提交给PM2CT中间件,并提出测试需求;由所述任务管理组件接受并管理请求者提交的测试任务,并对测试任务标注识别信息;由所述信息管理组件保存测试人员的个人信息,并对每个测试人员的工作记录进行统计;由所述PM2CT组件完成测试任务的拆分和匹配,及测试结果的合并输出;以及最后由PM2CT中间件将测试结果反馈给测试任务请求者。本发明通过对复杂测试任务的拆分、测试人员的能力和兴趣分析、子任务的分配和推送、子任务测试结果的合并,提高了测试任务的完成质量,缩短了测试所用的时间,最大化利用了互联网上的人力资源。

Patent Agency Ranking