-
-
公开(公告)号:CN105023025A
公开(公告)日:2015-11-04
申请号:CN201510481067.6
申请日:2015-08-03
Applicant: 大连海事大学
IPC: G06K9/62
CPC classification number: G06K9/6261
Abstract: 本发明涉及一种开集痕迹图像分类方法及系统,实现对痕迹图像进行自动分类。它采用多层级联的方式判断待分类图像是否属于痕迹图像库中的某一种类别或者新增类别。本发明具有速度快,人工参与少,结果相对准确且全面的特点,能够实现对图像库的自动扩充以及通过对现场痕迹的分类实现案件的串并,为警方办案提供很大的帮助。因此,本发明可以广泛用于痕迹分类领域。
-
公开(公告)号:CN105160348B
公开(公告)日:2018-06-12
申请号:CN201510472283.4
申请日:2015-08-04
Applicant: 大连海事大学
IPC: G06K9/62
Abstract: 本发明是关于一种基于图像统计特征的现场痕迹自动同一认定方法及系统。本发明依据现场痕迹反映出的花纹特征、结构特征、磨损特征及反映造痕体自身性质的个性特征分别从整体、部位和个性三个层次的特征进行逐级痕迹比对认定,整个认定过程不需要人工参与,自动提取特征并进行自动比对。另外,本发明自动检测提取特征及认定,不需要人工标画特征,很好的解决了人为认定的时效性问题和二义性问题。本发明的认定过程是针对现场痕迹的花纹特征、结构特征、磨损特征及反映造痕体自身性质的个性特征,并非单一特征进行认定,因此判定结果更加精确。因此,本发明可以广泛用于痕迹认定领域。
-
公开(公告)号:CN105160348A
公开(公告)日:2015-12-16
申请号:CN201510472283.4
申请日:2015-08-04
Applicant: 大连海事大学
IPC: G06K9/62
CPC classification number: G06K9/6209 , G06K9/6212
Abstract: 本发明是关于一种基于图像统计特征的现场痕迹自动同一认定方法及系统。本发明依据现场痕迹反映出的花纹特征、结构特征、磨损特征及反映造痕体自身性质的个性特征分别从整体、部位和个性三个层次的特征进行逐级痕迹比对认定,整个认定过程不需要人工参与,自动提取特征并进行自动比对。另外,本发明自动检测提取特征及认定,不需要人工标画特征,很好的解决了人为认定的时效性问题和二义性问题。本发明的认定过程是针对现场痕迹的花纹特征、结构特征、磨损特征及反映造痕体自身性质的个性特征,并非单一特征进行认定,因此判定结果更加精确。因此,本发明可以广泛用于痕迹认定领域。
-
-
-