-
公开(公告)号:CN110458116B
公开(公告)日:2022-10-25
申请号:CN201910749822.2
申请日:2019-08-14
Applicant: 大连海事大学
IPC: G06V40/10 , G06V10/75 , G06V10/764
Abstract: 本发明提供一种基于姿态信息的步态多特征表达和匹配方法,包括以下步骤:有肩、无肩姿态能量图提取、时变姿态特征及其二维频谱提取、基于MvDA降维矩阵的训练、自适应匹配得分计算及识别结果预测。主要从以下三个方面提高行走状态改变时步态识别的鲁棒性,其一:提取的无肩姿态能量图,通过忽略服装变化导致人体肩膀宽度的差异,只考虑胳膊和腿部摆动等特征,有助于提高穿衣变化的识别结果。其二:提取时变姿态特征的二维频谱特征,不仅考虑同一特征不同时刻的频谱,还考虑同一时刻不同特征的频谱,有助于提取人体关节之间的关联性;其三:采用自适应加权匹配得分计算的方法,有效地提高了背包和服装改变两种行走状态下步态识别的鲁棒性。
-
公开(公告)号:CN110458116A
公开(公告)日:2019-11-15
申请号:CN201910749822.2
申请日:2019-08-14
Applicant: 大连海事大学
Abstract: 本发明提供一种基于姿态信息的步态多特征表达和匹配方法,包括以下步骤:有肩、无肩姿态能量图提取、时变姿态特征及其二维频谱提取、基于MvDA降维矩阵的训练、自适应匹配得分计算及识别结果预测。主要从以下三个方面提高行走状态改变时步态识别的鲁棒性,其一:提取的无肩姿态能量图,通过忽略服装变化导致人体肩膀宽度的差异,只考虑胳膊和腿部摆动等特征,有助于提高穿衣变化的识别结果。其二:提取时变姿态特征的二维频谱特征,不仅考虑同一特征不同时刻的频谱,还考虑同一时刻不同特征的频谱,有助于提取人体关节之间的关联性;其三:采用自适应加权匹配得分计算的方法,有效地提高了背包和服装改变两种行走状态下步态识别的鲁棒性。
-