-
公开(公告)号:CN118643277B
公开(公告)日:2024-11-01
申请号:CN202411117053.1
申请日:2024-08-15
Applicant: 大连海事大学
IPC: G06F18/10 , G06F18/214 , G06F18/2413 , G06F18/2411 , G06F18/243 , G06N20/20
Abstract: 本发明提供一种基于stacking集成学习的船舶油耗预测与速度优化方法,包括如下步骤:对油耗数据和影响油耗相关因素的数据进行预处理,基于预处理后的数据按照比例划分为训练数据和测试数据;构建stacking集成学习模型,用于船舶油耗的预测;将处理后的影响油耗相关因素数据输入到stacking集成学习模型中,实现对船舶油耗的预测;对stacking集成学习模型的预测结果进行评估;建立以船舶速度为决策变量,以船舶油耗最小为目标的船舶速度优化模型;对船舶速度优化模型进行离散化;基于船舶速度优化模型的约束,对离散后的船舶速度优化模型进行求解,确定不同航段最优的船舶速度,以及不同航段最优的船舶速度的船舶油耗,确定油耗节省量。
-
公开(公告)号:CN118643277A
公开(公告)日:2024-09-13
申请号:CN202411117053.1
申请日:2024-08-15
Applicant: 大连海事大学
IPC: G06F18/10 , G06F18/214 , G06F18/2413 , G06F18/2411 , G06F18/243 , G06N20/20
Abstract: 本发明提供一种基于stacking集成学习的船舶油耗预测与速度优化方法,包括如下步骤:对油耗数据和影响油耗相关因素的数据进行预处理,基于预处理后的数据按照比例划分为训练数据和测试数据;构建stacking集成学习模型,用于船舶油耗的预测;将处理后的影响油耗相关因素数据输入到stacking集成学习模型中,实现对船舶油耗的预测;对stacking集成学习模型的预测结果进行评估;建立以船舶速度为决策变量,以船舶油耗最小为目标的船舶速度优化模型;对船舶速度优化模型进行离散化;基于船舶速度优化模型的约束,对离散后的船舶速度优化模型进行求解,确定不同航段最优的船舶速度,以及不同航段最优的船舶速度的船舶油耗,确定油耗节省量。
-