-
公开(公告)号:CN112465703A
公开(公告)日:2021-03-09
申请号:CN202011391199.7
申请日:2020-12-01
Applicant: 大连海事大学
IPC: G06T3/40
Abstract: 本发明提供一种含频谱偏移量估计的傅里叶叠层成像深度学习图像重构方法,本发明方法包括:S1、基于改进的傅里叶叠层方法,确定观测图像I(x,y);S2、将确定的所述观测图像I(x,y)建模为正向网络;S3、对建模后的前向网络进行优化,实现对观测图像I(x,y)的重构。本发明的技术方案解决了现有技术中的傅里叶叠层成像过程中的频谱偏移量误差的问题。本发明的技术方案将重构物体与估计频谱偏移量相结合,能够在一个流程中同时重构物体和估计频谱误差,适应性强,且无需进行预训练,可在网络训练过程中直接快速且准确的重构出物体,对频谱偏移量误差的容忍度高,适用于频谱偏移量存在随机误差的情况。
-
公开(公告)号:CN112465703B
公开(公告)日:2024-03-29
申请号:CN202011391199.7
申请日:2020-12-01
Applicant: 大连海事大学
IPC: G06T3/4061
Abstract: 本发明提供一种含频谱偏移量估计的傅里叶叠层成像深度学习图像重构方法,本发明方法包括:S1、基于改进的傅里叶叠层方法,确定观测图像I(x,y);S2、将确定的所述观测图像I(x,y)建模为正向网络;S3、对建模后的前向网络进行优化,实现对观测图像I(x,y)的重构。本发明的技术方案解决了现有技术中的傅里叶叠层成像过程中的频谱偏移量误差的问题。本发明的技术方案将重构物体与估计频谱偏移量相结合,能够在一个流程中同时重构物体和估计频谱误差,适应性强,且无需进行预训练,可在网络训练过程中直接快速且准确的重构出物体,对频谱偏移量误差的容忍度高,适用于频谱偏移量存在随机误差的情况。
-