一种基于多层聚类模型的居民日常行为识别方法

    公开(公告)号:CN109615075A

    公开(公告)日:2019-04-12

    申请号:CN201811535782.3

    申请日:2018-12-14

    Abstract: 本发明提供一种基于多层聚类模型的居民日常行为识别方法,包括:对训练集中的传感器事件流根据日常行为实例进行分割;通过K近邻算法进行聚簇,统计样本在每个簇下的分布;判断任意两个日常行为是否存在耦合;计算耦合集中日常行为的耦合度,降序排列;去除训练集中耦合度最大的行为实例;判断训练集是否存在耦合;使用分类模型对测试集中的行为实例进行分类;判断训练子集与原始的训练集间关系。本发明提出的多层聚类模型的行为分类方法对行为实例进行聚类,根据日常行为的耦合度对行为实例进行分步识别,克服了单层的分类方法由于行为实例耦合度较高导致分类性能较差的问题。从理论上讲,使用本发明将显著地提升居民日常行为的准确率和召回率。

    一种基于多层聚类模型的居民日常行为识别方法

    公开(公告)号:CN109615075B

    公开(公告)日:2022-08-19

    申请号:CN201811535782.3

    申请日:2018-12-14

    Abstract: 本发明提供一种基于多层聚类模型的居民日常行为识别方法,包括:对训练集中的传感器事件流根据日常行为实例进行分割;通过K近邻算法进行聚簇,统计样本在每个簇下的分布;判断任意两个日常行为是否存在耦合;计算耦合集中日常行为的耦合度,降序排列;去除训练集中耦合度最大的行为实例;判断训练集是否存在耦合;使用分类模型对测试集中的行为实例进行分类;判断训练子集与原始的训练集间关系。本发明提出的多层聚类模型的行为分类方法对行为实例进行聚类,根据日常行为的耦合度对行为实例进行分步识别,克服了单层的分类方法由于行为实例耦合度较高导致分类性能较差的问题。从理论上讲,使用本发明将显著地提升居民日常行为的准确率和召回率。

    基于频繁传感器事件序列的日常行为特征挖掘及计算方法

    公开(公告)号:CN109685125A

    公开(公告)日:2019-04-26

    申请号:CN201811537184.X

    申请日:2018-12-14

    CPC classification number: G06K9/6256 G06K9/6267 G06K9/66

    Abstract: 本发明提供一种基于频繁传感器事件序列的日常行为特征挖掘及计算方法,包括:识别模型训练和行为识别测试两阶段;识别模型训练包括:通过设置的多个非入侵式传感器采集居民日常行为按照时间顺序连续地触发的传感器事件序列;对采集到的传感器事件序列进行预处理,预处理将传感器事件序列分割为多个以日常行为为单位的子序列;挖掘频繁出现的传感器事件序列,作为居民日常行为的特征;计算居民日常行为在特征上的取值。本发明克服了预定义特征和离散特征的缺点,使用频繁序列模式挖掘方法全面有效地挖掘到居民日常行为的连续特征,并且提出了特征值的计算算法,因此从理论上讲,使用本发明挖掘出的特征将显著地提升居民日常行为的精确率和召回率。

Patent Agency Ranking