一种多模态核磁共振影像病历报告自动生成方法

    公开(公告)号:CN108376558B

    公开(公告)日:2021-08-20

    申请号:CN201810069685.3

    申请日:2018-01-24

    Applicant: 复旦大学

    Abstract: 本发明属于医疗数据分析与智能处理技术领域,具体是一种多模态核磁共振影像病历报告自动生成方法。本发明采用深度学习模型,其中,在使用卷积神经网络提取影像特征的基础上引入注意力矩阵,通过点乘运算给不同位置的特征赋予不同的权重,得到不同注意力下的影像特征;接着使用一个长短期记忆循环神经网络,根据不同注意力下的影像特征生成病历报告中每个句子的主题向量;再使用另一个长短期记忆循环神经网络,根据句子的主题向量生成每一个词;然后将这些词连接起来得到最后的病历报告。本发明在没有病历模版的情况下自动生成医学影像的病历中的描述文本,对缓解放射科医生的工作以及搭建智能化的计算机辅助诊断系统有着深远的意义。

    一种多模态核磁共振影像病历报告自动生成方法

    公开(公告)号:CN108376558A

    公开(公告)日:2018-08-07

    申请号:CN201810069685.3

    申请日:2018-01-24

    Applicant: 复旦大学

    CPC classification number: G16H15/00 G16H30/20 G16H50/20

    Abstract: 本发明属于医疗数据分析与智能处理技术领域,具体是一种多模态核磁共振影像病历报告自动生成方法。本发明采用深度学习模型,其中,在使用卷积神经网络提取影像特征的基础上引入注意力矩阵,通过点乘运算给不同位置的特征赋予不同的权重,得到不同注意力下的影像特征;接着使用一个长短期记忆循环神经网络,根据不同注意力下的影像特征生成病历报告中每个句子的主题向量;再使用另一个长短期记忆循环神经网络,根据句子的主题向量生成每一个词;然后将这些词连接起来得到最后的病历报告。本发明在没有病历模版的情况下自动生成医学影像的病历中的描述文本,对缓解放射科医生的工作以及搭建智能化的计算机辅助诊断系统有着深远的意义。

Patent Agency Ranking