一种基于高斯分布表示的深度推荐模型

    公开(公告)号:CN110765363A

    公开(公告)日:2020-02-07

    申请号:CN201910920671.2

    申请日:2019-09-27

    Applicant: 复旦大学

    Abstract: 本发明属于人工智能领域,具体为一种基于高斯分布表示的深度推荐模型。本发明推荐模型分为四层:依次为嵌入表示层、特征交互层、特征抽取层与预测层;在嵌入表示层产生目标用户u和待推荐物品v的高斯分布向量;在特征交互层通过蒙特卡洛采样法为u和v各生成同样数量的样本,每个用户样本向量和每个物品样本向量两两配对并组成一个交互特征立方体E;在特征抽取层通过搭建卷积神经网络和多层感知机网络,从E中提取出u和v的交互特征并进行压缩;在预测层用逻辑斯蒂(Sigmoid)函数计算最终的预测分数。本发明模型具有灵活的用户/物品表示特性,可实现对具有不确定偏好用户的精准推荐。

    一种基于高斯分布表示的深度推荐系统

    公开(公告)号:CN110765363B

    公开(公告)日:2023-05-05

    申请号:CN201910920671.2

    申请日:2019-09-27

    Applicant: 复旦大学

    Abstract: 本发明属于人工智能领域,具体为一种基于高斯分布表示的深度推荐模型。本发明推荐模型分为四层:依次为嵌入表示层、特征交互层、特征抽取层与预测层;在嵌入表示层产生目标用户u和待推荐物品v的高斯分布向量;在特征交互层通过蒙特卡洛采样法为u和v各生成同样数量的样本,每个用户样本向量和每个物品样本向量两两配对并组成一个交互特征立方体E;在特征抽取层通过搭建卷积神经网络和多层感知机网络,从E中提取出u和v的交互特征并进行压缩;在预测层用逻辑斯蒂(Sigmoid)函数计算最终的预测分数。本发明模型具有灵活的用户/物品表示特性,可实现对具有不确定偏好用户的精准推荐。

Patent Agency Ranking