-
公开(公告)号:CN114091752A
公开(公告)日:2022-02-25
申请号:CN202111387699.8
申请日:2021-11-22
Applicant: 复旦大学
Abstract: 本发明属于人工智能时间序列预测技术领域,具体为一种提升时间序列预测系统预测时间序列效果的方法。本发明基于时间序列预测损失上的理论分析,设计新的时间序列预测算法,该算法建模历史数据模式与未来数据模式上的差异,提出两步走的训练方式,一方面保证模型对历史数据的记忆不会轻易消失,另一方面保证在未来数据上有较好的预测效果。理论分析与实验验证表明,在时间序列预测任务中,本发明预测方法相比于其他方法,可以有效缓解由于数据随时间的变化即概念漂移而导致的模型老化问题;可以进一步提升模型的预测准确率。本发明能够广泛应用于各类基于实数值的时间序列预测任务,提升任务在未来数据点上的预测准确度。
-
公开(公告)号:CN114091752B
公开(公告)日:2024-09-03
申请号:CN202111387699.8
申请日:2021-11-22
Applicant: 复旦大学
IPC: G06Q10/04 , G06Q10/109 , G06N3/0442 , G06N3/0464 , G06N3/08 , G06F18/24
Abstract: 本发明属于人工智能时间序列预测技术领域,具体为一种提升时间序列预测系统预测时间序列效果的方法。本发明基于时间序列预测损失上的理论分析,设计新的时间序列预测算法,该算法建模历史数据模式与未来数据模式上的差异,提出两步走的训练方式,一方面保证模型对历史数据的记忆不会轻易消失,另一方面保证在未来数据上有较好的预测效果。理论分析与实验验证表明,在时间序列预测任务中,本发明预测方法相比于其他方法,可以有效缓解由于数据随时间的变化即概念漂移而导致的模型老化问题;可以进一步提升模型的预测准确率。本发明能够广泛应用于各类基于实数值的时间序列预测任务,提升任务在未来数据点上的预测准确度。
-