一种面向小样本视频动作分类的方法

    公开(公告)号:CN110188668A

    公开(公告)日:2019-08-30

    申请号:CN201910453199.6

    申请日:2019-05-28

    Applicant: 复旦大学

    Abstract: 本发明属于计算机技术领域,具体涉及面向小样本视频动作分类的方法。本发明针对现有小样本视频动作分类的设定存在训练集与测试集类别交叉的问题,提出基于智能人体的小样本视频识别新模式,利用3D智能虚拟人体与虚拟环境交互的方式生成相同动作的大量虚拟视频,为深度神经网络提供训练样本;此外,还提出基于视频段替换的数据增强方法,通过用语义相近的视频片段替换原视频中某个片段的方法扩充有限的数据集。实验表明该方法对于小样本视频动作识别能起到很大的促进作用,且具有较好的鲁棒性与较强的算法可移植性。

    一种面向小样本视频动作分类的方法

    公开(公告)号:CN110188668B

    公开(公告)日:2020-09-25

    申请号:CN201910453199.6

    申请日:2019-05-28

    Applicant: 复旦大学

    Abstract: 本发明属于计算机技术领域,具体涉及面向小样本视频动作分类的方法。本发明针对现有小样本视频动作分类的设定存在训练集与测试集类别交叉的问题,提出基于智能人体的小样本视频识别新模式,利用3D智能虚拟人体与虚拟环境交互的方式生成相同动作的大量虚拟视频,为深度神经网络提供训练样本;此外,还提出基于视频段替换的数据增强方法,通过用语义相近的视频片段替换原视频中某个片段的方法扩充有限的数据集。实验表明该方法对于小样本视频动作识别能起到很大的促进作用,且具有较好的鲁棒性与较强的算法可移植性。

    基于隐空间搜索的手绘草图引导的图像编辑方法

    公开(公告)号:CN113112572B

    公开(公告)日:2022-09-06

    申请号:CN202110393721.3

    申请日:2021-04-13

    Applicant: 复旦大学

    Abstract: 本发明提供一种基于隐空间搜索的手绘草图引导的图像编辑方法,用于对待编辑图像进行编辑,其特征在于,包括:步骤S1,得到训练用图像;步骤S2,提取训练用图像的边缘图并训练神经网络;步骤S3,提取待编辑图像的边缘图,并根据掩膜将该边缘图与手绘草图结合;步骤S4,使用神经网络计算初始隐空间向量;步骤S5,根据初始隐空间向量生成生成图像;步骤S6,提取生成图像的边缘图并计算其与手绘草图在掩膜区域的特征图距离,同时计算其与待编辑图像在非掩膜区域的欧几里得距离以及感知距离;步骤S7,使用梯度下降算法使三种距离持续减小;步骤S8,将最终生成的生成图像的掩膜区域与待编辑图像的非掩膜区域融合得到最终编辑结果。

    基于隐空间搜索的手绘草图引导的图像编辑方法

    公开(公告)号:CN113112572A

    公开(公告)日:2021-07-13

    申请号:CN202110393721.3

    申请日:2021-04-13

    Applicant: 复旦大学

    Abstract: 本发明提供一种基于隐空间搜索的手绘草图引导的图像编辑方法,用于对待编辑图像进行编辑,其特征在于,包括:步骤S1,得到训练用图像;步骤S2,提取训练用图像的边缘图并训练神经网络;步骤S3,提取待编辑图像的边缘图,并根据掩膜将该边缘图与手绘草图结合;步骤S4,使用神经网络计算初始隐空间向量;步骤S5,根据初始隐空间向量生成生成图像;步骤S6,提取生成图像的边缘图并计算其与手绘草图在掩膜区域的特征图距离,同时计算其与待编辑图像在非掩膜区域的欧几里得距离以及感知距离;步骤S7,使用梯度下降算法使三种距离持续减小;步骤S8,将最终生成的生成图像的掩膜区域与待编辑图像的非掩膜区域融合得到最终编辑结果。

Patent Agency Ranking