-
公开(公告)号:CN119599106A
公开(公告)日:2025-03-11
申请号:CN202411647636.5
申请日:2024-11-18
Applicant: 复旦大学
Abstract: 本发明提供了一种基于预训练模型的图神经网络知识图谱补全方法,具有这样的特征,包括步骤S1,得到各个有描述实体和关系对应的自然语言表示;步骤S2,根据所有有描述实体对应的自然语言表示,得到各个无描述实体对应的自然语言表示;步骤S3,训练得到知识图谱补全模型,以及各个关系对应的表示和各个无描述实体对应的初始语义表示;步骤S4,将三元组、各个有描述实体对应的自然语言表示和三元组中关系对应的表示输入训练好的知识图谱补全模型,得到缺失实体。总之,本方法能够提高知识图谱的补全效果。