一种基于测试时微调的图数据分析方法

    公开(公告)号:CN119962628A

    公开(公告)日:2025-05-09

    申请号:CN202510050123.4

    申请日:2025-01-13

    Abstract: 本发明公开了一种基于测试时微调的图数据分析方法。该方法包括以下步骤:收集图预训练数据集;构建图基础模型,并利用图预训练数据集对图基础模型进行预训练,获取预训练后的图基础模型;设置测试时微调阶段,并在测试时微调阶段对预训练后的图基础模型进行改进,以获取改进的图形基础模型;获取待分析图数据集,并利用改进的图形基础模型对待分析图数据集进行分析,以获取图数据分析结果。本发明提出的方法在推理阶段引入了额外的参数调整阶段,即测试时微调阶段,通过这一阶段,可以有效减少推理阶段的计算资源消耗,提高推理效率,相比于现有技术,本发明在保证预测精度的前提下,大大加快了推理速度,适合处理大规模图数据。

    一种面向图学习的联合任务与分布泛化方法

    公开(公告)号:CN119962626A

    公开(公告)日:2025-05-09

    申请号:CN202510050118.3

    申请日:2025-01-13

    Abstract: 本发明公开了一种面向图学习的联合任务与分布泛化方法,包括如下步骤:获取蛋白质分子对应的源任务集、适应样本集和目标任务集;使用训练集对神经网络模型进行训练,得到图预测模型;图预测模型包括输入模块、精炼器模块和预测器模块;使用适应样本集对图预测模型进行适配性训练,得到特定图预测模型;将目标任务集输入特定图预测模型,通过特定图预测模型输出目标任务集对应的蛋白质分子预测结果。本发明可以通过提取任务关键子图,减少了图数据中的冗余信息,提高了模型的预测准确性和泛化性。

    一种基于图神经网络和语言模型的内容推荐方法

    公开(公告)号:CN119961518A

    公开(公告)日:2025-05-09

    申请号:CN202510050126.8

    申请日:2025-01-13

    Abstract: 本发明公开了一种基于图神经网络和语言模型的内容推荐方法。该方法包括以下步骤:获取用户的标准配置文件数据和标准交互数据;构建用户交互图数据;获取用户的偏好推理结果;将用户的偏好推理结果转换为查询嵌入,并使用查询嵌入对用户交互图数据进行子图提取,以获取用户偏好子图数据;获取用户的意图推理子图数据;基于用户的意图推理子图数据和图神经网络,获取待推荐内容的评分结果。本发明结合了用户配置文件、交互图和交互信息等多种数据源,通过自然语言处理技术和图神经网络,能够更全面地捕捉用户偏好的信息,这不仅弥补了现有方法依赖显式数据的不足,还能够从隐式数据中发现用户潜在的兴趣爱好,提高推荐的准确性和覆盖面。

Patent Agency Ranking