一种基于联邦图神经网络的多语种社交事件检测方法

    公开(公告)号:CN113076422B

    公开(公告)日:2022-06-03

    申请号:CN202110406469.5

    申请日:2021-04-15

    Abstract: 本发明涉及社交事件检测技术领域,且公开了一种基于联邦图神经网络的多语种社交事件检测方法,包括以下步骤:S1:提取消息,将社交信息中的消息提取出来,然后将和消息有关的消息也提取出来当作异构图中的节点;S2:添加节点边,根据社交信息添加节点之间的边;S3:预训练阶段,使用图神经网络学习消息的表征,对消息图进行初始化并且初始化模型。本发明将社会信息中丰富的语义和结构信息融合在一起,以获取更多的知识,能够应对持续的社交检测事件,并使用动态社交流扩展其知识,可以实现不同语言模态数据环境下高准确性的事件检测,有效缓解了少样本的小语种事件检测难题。

    一种基于联邦图神经网络的多语种社交事件检测方法

    公开(公告)号:CN113076422A

    公开(公告)日:2021-07-06

    申请号:CN202110406469.5

    申请日:2021-04-15

    Abstract: 本发明涉及社交事件检测技术领域,且公开了一种基于联邦图神经网络的多语种社交事件检测方法,包括以下步骤:S1:提取消息,将社交信息中的消息提取出来,然后将和消息有关的消息也提取出来当作异构图中的节点;S2:添加节点边,根据社交信息添加节点之间的边;S3:预训练阶段,使用图神经网络学习消息的表征,对消息图进行初始化并且初始化模型。本发明将社会信息中丰富的语义和结构信息融合在一起,以获取更多的知识,能够应对持续的社交检测事件,并使用动态社交流扩展其知识,可以实现不同语言模态数据环境下高准确性的事件检测,有效缓解了少样本的小语种事件检测难题。

    一种基于多数据源的论文数据爬取方法及系统

    公开(公告)号:CN110704713A

    公开(公告)日:2020-01-17

    申请号:CN201910916820.8

    申请日:2019-09-26

    Abstract: 本发明公开一种基于多数据源的论文数据爬取方法及系统,进行批量关键词论文数据抓取。爬取任务执行前,使用关键词或论文基本信息拼接URL,并将其添加至待抓取队列;执行时,程序分多个子爬取线程,分别从已经经过任务调度算法均衡的多个待爬取队列中取出任务进行源码抓取;执行后,从抓取回的网页源码中解析出所需要的字段,结果存储进数据库中,构建论文数据数据库。相比现有技术,本发明能够提供更高效且全面的论文爬取功能,在服务用户的检索需求时可以快速响应并且将各数据源的查询结果融合展示在用户面前,可以使用户无需对每个数据源的检索结果进行甄别与比对,极大地方便了用户的使用,节约了用户的时间。

Patent Agency Ranking