一种基于社区结构的集体预测方法

    公开(公告)号:CN107545508A

    公开(公告)日:2018-01-05

    申请号:CN201610474035.8

    申请日:2016-06-24

    Abstract: 本发明提供了一种基于社区结构的集体预测方法,所述方法包括:步骤1)遍历网络V中的每个节点,利用社区模块度指标生成若干个社区,每个节点归属于其中一个社区;步骤2)利用网络V中已知标签的节点自身的特征向量和社区结构向量训练预测模型;步骤3)计算所有未知标签节点的自身特征向量和社区结构向量,输入预测模型获取所有未知标签节点的标签和概率;反复进行该步骤,直至所有未知标签节点的标签不再发生改变,输出所有未知标签节点的最终标签和概率。本发明的方法能够提高社区结构中节点标签的预测的正确率。

    一种基于频域信息与多任务学习的深度伪造视频鉴别方法

    公开(公告)号:CN115187891A

    公开(公告)日:2022-10-14

    申请号:CN202210585640.8

    申请日:2022-05-27

    Abstract: 本发明涉及一种基于频域信息与多任务学习的深度伪造视频鉴别方法,使用频域分析中的离散余弦变换,结合分块处理的方式保留部分RGB三通道图像的空间信息,得到频域特征作为输入数据;使用多任务学习的深度神经网络提取输入数据的特征,将Xception网络作为骨干网络模块,并设计基于反卷积运算的分割模块与基于特征融合的分类模块,将骨干网络模块与分割模块提取的特征融合;同时设计优化训练引导目标算法,将融合后的特征间关系转化为三维条件下的几何距离,通过优化训练引导目标算法完成多任务学习的深度神经网络模型的训练,得到深度伪造视频鉴别模型,完成深度伪造视频的鉴别。

Patent Agency Ranking