-
公开(公告)号:CN109189743B
公开(公告)日:2021-09-28
申请号:CN201810671449.9
申请日:2018-06-26
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/178 , G06F16/182 , H04L12/26 , H04L29/06
Abstract: 本发明公开一种面向大流量实时图数据的低资源消耗的超级节点识别过滤方法和系统,属于大数据预处理领域。该方法包括:1)接收图数据并对其进行格式转化;2)根据过滤规则对格式转化之后的数据进行过滤;3)识别过滤之后的数据中的超级节点,并根据识别出的超级节点对所述过滤规则进行动态修改。该系统包括数据接收模块、数据过滤模块、过滤规则管理模块以及超级节点识别模块。本发明可在海量实时图数据流中识别出超级节点,是一种低资源消耗的超级节点识别方案,只需极少资源就可以在海量数据中识别出超级节点。
-
公开(公告)号:CN109189743A
公开(公告)日:2019-01-11
申请号:CN201810671449.9
申请日:2018-06-26
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
IPC: G06F16/178 , G06F16/182 , H04L12/26 , H04L29/06
Abstract: 本发明公开一种面向大流量实时图数据的低资源消耗的超级节点识别过滤方法和系统,属于大数据预处理领域。该方法包括:1)接收图数据并对其进行格式转化;2)根据过滤规则对格式转化之后的数据进行过滤;3)识别过滤之后的数据中的超级节点,并根据识别出的超级节点对所述过滤规则进行动态修改。该系统包括数据接收模块、数据过滤模块、过滤规则管理模块以及超级节点识别模块。本发明可在海量实时图数据流中识别出超级节点,是一种低资源消耗的超级节点识别方案,只需极少资源就可以在海量数据中识别出超级节点。
-