基于卷积神经网络的锚杆锚固密实度等级评定方法

    公开(公告)号:CN110826598A

    公开(公告)日:2020-02-21

    申请号:CN201910980865.1

    申请日:2019-10-16

    Applicant: 四川大学

    Abstract: 本发明提供一种基于卷积神经网络的锚杆锚固密实度等级评定方法,通过声波反射法获取反射信号,通过对其进行归一化、平滑和对x方向修正等处理,得到规格化后的反射信号并绘制成波形图;根据数据长度建立不同的训练样本数据集和其波形图,使用人工方式获得分类标签,使用卷积神经网络训练获得相应的训练模型;在进行具体的分类时将本次测量的波形图输入到该分类模型中,进行一次正向计算,得到各分类概率,从而实现了锚杆锚固密实度的等级评定。该方法使用标准的卷积神经网络进行判定,具有稳定性好,现场适应性强、判定结果准确等特点,有较好的应用效果。

    基于卷积神经网络的锚杆锚固密实度等级评定方法

    公开(公告)号:CN110826598B

    公开(公告)日:2022-09-02

    申请号:CN201910980865.1

    申请日:2019-10-16

    Applicant: 四川大学

    Abstract: 本发明提供一种基于卷积神经网络的锚杆锚固密实度等级评定方法,通过声波反射法获取反射信号,通过对其进行归一化、平滑和对x方向修正等处理,得到规格化后的反射信号并绘制成波形图;根据数据长度建立不同的训练样本数据集和其波形图,使用人工方式获得分类标签,使用卷积神经网络训练获得相应的训练模型;在进行具体的分类时将本次测量的波形图输入到该分类模型中,进行一次正向计算,得到各分类概率,从而实现了锚杆锚固密实度的等级评定。该方法使用标准的卷积神经网络进行判定,具有稳定性好,现场适应性强、判定结果准确等特点,有较好的应用效果。

Patent Agency Ranking