一种基于CLIP的非独立同分布数据联邦学习方法

    公开(公告)号:CN117829267A

    公开(公告)日:2024-04-05

    申请号:CN202311631565.5

    申请日:2023-11-27

    Abstract: 本发明属于联邦学习技术领域,公开了一种基于CLIP的非独立同分布数据联邦学习方法,适用于服务端和若干与服务端通信连接的客户端之间的模型训练;每个客户端设置有CLIP模型;首先,服务端确定自定义模型和训练任务,将自定义模型和训练参数发送给与之通信连接的全部客户端;每个客户端利用本地训练数据集对自定义模型进行训练,并将训练好的自定义模型上传至服务端;服务端依据来自各客户端的自定义模型进行分类聚合,为每一组生成个性化自定义模型,并分发给相应客户端。本发明针对客户端上传的自定义模型参数进行分组,然后聚合,使得在面对非独立同分布数据时,聚合的模型准确率高。

Patent Agency Ranking