-
公开(公告)号:CN117829267A
公开(公告)日:2024-04-05
申请号:CN202311631565.5
申请日:2023-11-27
Applicant: 喀什地区电子信息产业技术研究院
IPC: G06N3/098 , G06N3/0464 , G06N3/0455 , G06F18/2415 , G06V10/82 , G06F18/232
Abstract: 本发明属于联邦学习技术领域,公开了一种基于CLIP的非独立同分布数据联邦学习方法,适用于服务端和若干与服务端通信连接的客户端之间的模型训练;每个客户端设置有CLIP模型;首先,服务端确定自定义模型和训练任务,将自定义模型和训练参数发送给与之通信连接的全部客户端;每个客户端利用本地训练数据集对自定义模型进行训练,并将训练好的自定义模型上传至服务端;服务端依据来自各客户端的自定义模型进行分类聚合,为每一组生成个性化自定义模型,并分发给相应客户端。本发明针对客户端上传的自定义模型参数进行分组,然后聚合,使得在面对非独立同分布数据时,聚合的模型准确率高。
-
公开(公告)号:CN118396082A
公开(公告)日:2024-07-26
申请号:CN202410619408.0
申请日:2024-05-19
Applicant: 喀什地区电子信息产业技术研究院
IPC: G06N3/098 , G06N3/088 , G06N3/0455
Abstract: 本发明属于机器学习技术领域,公开了一种基于对比学习和条件计算的个性化联邦学习方法,中央服务器包括全局模型;客户端包括全局模型、对比模型和客户端本地模型;引入对比学习和条件计算,使用对比学习拉大本地模型与对比模型的差异;使用条件计算对全局模型和个性化本地模型特征提取部分进行选择,选取合适的参数进行聚合,使得个性化本地模型的准确率大大提高,并减少通信轮次。
-