-
公开(公告)号:CN109918681A
公开(公告)日:2019-06-21
申请号:CN201910249978.4
申请日:2019-03-29
Applicant: 哈尔滨理工大学
IPC: G06F17/27 , G06F16/332 , G06F16/33 , G06F16/35
Abstract: 本发明提出了一种融合问题语义匹配方法,属于自然语言处理领域。本发明用于自动匹配回答消费者线上咨询时所提出的问题,同时通过汉字-拼音特征融合的方法降低消费者所输入的同音错别字对问题语义匹配模型性能的影响。本发明所提出的双孪生长短时记忆网络结构通过两个单孪生长短时记忆网络独立地对汉字与拼音两种特征进行语义提取,使模型能够以不同的方式提取汉字序列与拼音序列的特征,再通过汉字与拼音特征拼接并进行语义合成,得到融合了汉字与拼音特征的语义向量,最后通过计算两个问题语义向量之间的负指数曼哈顿距离,输出两个问题的语义匹配程度。本发明提高了问题语义匹配模型在实际应用中的效果。
-
公开(公告)号:CN109918681B
公开(公告)日:2023-01-31
申请号:CN201910249978.4
申请日:2019-03-29
Applicant: 哈尔滨理工大学
IPC: G06F40/30 , G06F16/332 , G06F16/33 , G06F16/35 , G06N3/0442 , G06N3/045
Abstract: 本发明提出了一种融合问题语义匹配方法,属于自然语言处理领域。本发明用于自动匹配回答消费者线上咨询时所提出的问题,同时通过汉字‑拼音特征融合的方法降低消费者所输入的同音错别字对问题语义匹配模型性能的影响。本发明所提出的双孪生长短时记忆网络结构通过两个单孪生长短时记忆网络独立地对汉字与拼音两种特征进行语义提取,使模型能够以不同的方式提取汉字序列与拼音序列的特征,再通过汉字与拼音特征拼接并进行语义合成,得到融合了汉字与拼音特征的语义向量,最后通过计算两个问题语义向量之间的负指数曼哈顿距离,输出两个问题的语义匹配程度。本发明提高了问题语义匹配模型在实际应用中的效果。
-