-
公开(公告)号:CN103630973A
公开(公告)日:2014-03-12
申请号:CN201310692489.9
申请日:2013-12-17
Applicant: 哈尔滨理工大学
Abstract: 液芯光纤与石英光纤耦合装置的制作方法,它属于光学技术领域。它为了解决现有的采用液芯光纤与石英光纤的耦合装置制作液体耦合的方法牢固性差、封装粗糙、损耗大的问题。利用飞秒微加工装置将一根空心光纤的两端制作两个小孔,采用光纤切割刀分别将两根石英光纤的一端和空心光纤的两端的端面切割平,再利用熔接机将空心光纤的两端分别与两根石英光纤的平面端熔接并连通,将第一三通和第二三通分别移至第一开孔和第二开孔处,并采用螺丝将两端分别固定在空心光纤上,将空心光纤抽成真空,然后开启液体加压装置将液体从第一三通的第三端注入,直到空心光纤成为充满液体的液芯光纤,完成液芯光纤和石英光纤耦合装置的制作。它可用于光纤通信、光纤传感等光纤网络中。
-
公开(公告)号:CN103604450A
公开(公告)日:2014-02-26
申请号:CN201310594970.4
申请日:2013-11-22
Applicant: 哈尔滨理工大学
IPC: G01D5/353
Abstract: 种子注入BOTDR分布式光纤传感系统,涉及种子注入布里渊光时域反射技术,属于非扫描式实时测量分布式光纤传感技术领域。它为了解决现有BOTDR系统信噪比低、传感距离短,BOTDA系统结构复杂、无法实时测量、故障检测困难的问题。本发明用覆盖脉冲泵浦光在传感光纤中形成的布里渊增益谱或损耗谱范围的宽带种子光取代了传统BOTDA系统中扫频型探测光,从而规避了扫频过程,能够实现实时传感,且可以在不增加系统复杂度的情况下完成故障检测;结构简洁,与单端法BOTDR系统相比,传感信号输出更加稳定,传感精度高,在50-80km内信噪比提高10dB以上。本发明适用于布里渊光纤传感的工程化应用。
-
公开(公告)号:CN102820613A
公开(公告)日:2012-12-12
申请号:CN201210327338.9
申请日:2012-09-06
Applicant: 哈尔滨理工大学
Abstract: 液芯光纤中基于泵浦调制获得平顶布里渊增益谱的方法及装置,涉及获得平顶布里渊增益谱的方法及装置,它为了解决现有方法及装置中采用的色散位移光纤或标准单模光纤过长、等幅泵浦线较少时无法获得平顶增益谱、以及本征布里渊增益谱不可改变的问题。方法是对激光器输出的激光调制获得多谱线泵浦光,所述多谱线泵浦光输入到液芯光纤中,在液芯光纤中的后向布里渊散射光的光谱即平顶布里渊增益谱。一种装置它由激光器、偏振控制器、强度调制器、信号发生器、直流稳压电源、光纤环行器、光纤耦合器和液芯光纤组成;另一种装置它由信号发生器、光纤环行器、光纤耦合器、液芯光纤和相位调制器组成。适用于获得平顶布里渊增益谱的方法及装置。
-
公开(公告)号:CN102967371B
公开(公告)日:2015-04-22
申请号:CN201210505039.X
申请日:2012-11-30
Applicant: 哈尔滨理工大学
Abstract: 泵浦-探测法非扫描式测量布里渊增益谱的装置及方法,涉及一种测量布里渊增益谱的装置及方法。本发明为了解决现有装置及方法中测量布里渊增益谱的信噪比较低、测量时间长和装置复杂的问题。泵浦-探测法非扫描式测量布里渊增益谱的装置中光纤激光器的激光输出端与光纤环行器的第一端口连通,光纤环行器的第二端口与偏振控制器的第一端口连通,偏振控制器的第二端口与待测光纤的一端连通;ASE光源的激光输出端与光纤隔离器的光线输入端连通,光纤隔离器的光线输出端与待测光纤的另一端连通,光纤环行器的第三端口为所述泵浦-探测法非扫描式测量布里渊增益谱的装置的光线输出端,上述连接均为光纤连接。本发明适用于测量布里渊增益谱。
-
公开(公告)号:CN104062012A
公开(公告)日:2014-09-24
申请号:CN201410342228.9
申请日:2014-07-18
Applicant: 哈尔滨理工大学
Abstract: 基于探测光平顶谱调制法实现布里渊信号频域凝视泵浦探测的方法及装置,属于光学领域,本发明为提供一种基于探测光平顶谱调制法实现对布里渊信号实施频域凝视泵浦探测的技术,能够对介质中传输的布里渊增益/损耗信号在谱空间中进行凝视探测。本发明方法包括:频域凝视泵浦探测技术,利用凝视探测光与泵浦光之间的选择性SBS原理,实现在频域中对布里渊信号的凝视探测;和探测光平顶谱调制技术,利用任意波形信号发生器实现对窄线宽DFB激光器的内调制,获得平顶且频域视场和频谱功率密度灵活可调的凝视探测光。
-
公开(公告)号:CN104062012B
公开(公告)日:2015-12-09
申请号:CN201410342228.9
申请日:2014-07-18
Applicant: 哈尔滨理工大学
Abstract: 基于探测光平顶谱调制法实现布里渊信号频域凝视泵浦探测的方法及装置,属于光学领域,本发明为提供一种基于探测光平顶谱调制法实现对布里渊信号实施频域凝视泵浦探测的技术,能够对介质中传输的布里渊增益/损耗信号在谱空间中进行凝视探测。本发明方法包括:频域凝视泵浦探测技术,利用凝视探测光与泵浦光之间的选择性SBS原理,实现在频域中对布里渊信号的凝视探测;和探测光平顶谱调制技术,利用任意波形信号发生器实现对窄线宽DFB激光器的内调制,获得平顶且频域视场和频谱功率密度灵活可调的凝视探测光。
-
公开(公告)号:CN103440895A
公开(公告)日:2013-12-11
申请号:CN201310428704.4
申请日:2013-09-18
Applicant: 哈尔滨理工大学
Abstract: 利用液芯光纤产生稳定涡旋光束的装置及方法,涉及光学领域。本发明是为了解决现有利用多模石英光纤产生的涡旋光束不稳定、受外界应力影响严重和装置复杂的问题。本发明所述的利用液芯光纤产生稳定涡旋光束的装置及方法,所述装置包括激光器,偏振片,耦合透镜,液芯光纤和准直透镜。所述方法:激光器发出的激光入射至偏振片,经偏振片的偏振作用形成线偏振激光再入射至耦合透镜,耦合透镜输出的线偏振激光以入射角θ(0°~5°)入射至液芯光纤中,经液芯光纤传输后输出涡旋光束,所述涡旋光束入射至准直透镜,经准直作用输出平行涡旋光束。在微观粒子的光学囚禁与操控、激光消融加工、自由空间光通信、非线性频率转换和强场电离等领域有重大应用前景。
-
公开(公告)号:CN103630973B
公开(公告)日:2015-08-05
申请号:CN201310692489.9
申请日:2013-12-17
Applicant: 哈尔滨理工大学
Abstract: 液芯光纤与石英光纤耦合装置的制作方法,它属于光学技术领域。它为了解决现有的采用液芯光纤与石英光纤的耦合装置制作液体耦合的方法牢固性差、封装粗糙、损耗大的问题。利用飞秒微加工装置将一根空心光纤的两端制作两个小孔,采用光纤切割刀分别将两根石英光纤的一端和空心光纤的两端的端面切割平,再利用熔接机将空心光纤的两端分别与两根石英光纤的平面端熔接并连通,将第一三通和第二三通分别移至第一开孔和第二开孔处,并采用螺丝将两端分别固定在空心光纤上,将空心光纤抽成真空,然后开启液体加压装置将液体从第一三通的第三端注入,直到空心光纤成为充满液体的液芯光纤,完成液芯光纤和石英光纤耦合装置的制作。它可用于光纤通信、光纤传感等光纤网络中。
-
公开(公告)号:CN103308171B
公开(公告)日:2015-01-28
申请号:CN201310259314.9
申请日:2013-06-26
Applicant: 哈尔滨理工大学
IPC: G01J3/45
Abstract: 采用矩形谱探测光测量光纤布里渊增益谱的装置及方法,属于光纤布里渊增益谱的测量技术领域。本发明为了解决现有布里渊增益谱的测试方法中,采用ASE光源作为探测光,不利于远距离测量的问题。装置包括光纤激光器、第一光纤分路器、第二光纤分路器、第一偏振控制器、光纤环行器、待测光纤、第二偏振控制器、外差测量仪、矩形谱探测光源和光纤隔离器;方法中根据待测光纤材料的不同,对矩形谱的带宽进行灵活调节;在Stokes频移附近的矩形谱探测光,功率可调,且能满足远距离探测的需要。本发明用于探测光纤布里渊增益谱。
-
公开(公告)号:CN102820613B
公开(公告)日:2014-04-23
申请号:CN201210327338.9
申请日:2012-09-06
Applicant: 哈尔滨理工大学
Abstract: 液芯光纤中基于泵浦调制获得平顶布里渊增益谱的方法及装置,涉及获得平顶布里渊增益谱的方法及装置,它为了解决现有方法及装置中采用的色散位移光纤或标准单模光纤过长、等幅泵浦线较少时无法获得平顶增益谱、以及本征布里渊增益谱不可改变的问题。方法是对激光器输出的激光调制获得多谱线泵浦光,所述多谱线泵浦光输入到液芯光纤中,在液芯光纤中的后向布里渊散射光的光谱即平顶布里渊增益谱。一种装置它由激光器、偏振控制器、强度调制器、信号发生器、直流稳压电源、光纤环行器、光纤耦合器和液芯光纤组成;另一种装置它由信号发生器、光纤环行器、光纤耦合器、液芯光纤和相位调制器组成。适用于获得平顶布里渊增益谱的方法及装置。
-
-
-
-
-
-
-
-
-