-
公开(公告)号:CN117573975B
公开(公告)日:2024-12-13
申请号:CN202311548012.3
申请日:2023-11-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 鹏城实验室
IPC: G06F16/9535 , G06N3/0455 , G06N3/042 , G06N3/048 , G06N3/098
Abstract: 本发明提供了一种联邦跨领域的信息推荐方法、装置、终端设备及介质,所述信息推荐方法从服务器获取预先训练好的跨域序列推荐模型,并且通过用户的交互信息,确定对用户的推荐建议。该模型由服务器将多个本地模型聚合得到,每个本地模型对应一个客户端,并且每个本地模型在对应的客户端本地训练得到,这样,对于客户端来说,不需要将本地的数据上传到服务器,也可以通过服务器训练得到跨域序列推荐模型,然后从服务器获取该模型并进行应用,确保了客户端数据拥有方的数据隐私,此外相比现有的定制化推荐模型,跨域序列推荐模型通过多个本地模型聚合得到并且各本地模型分别由对应客户端本地训练得到,可以有效提高跨域序列推荐模型的性能和质量。
-
公开(公告)号:CN117573975A
公开(公告)日:2024-02-20
申请号:CN202311548012.3
申请日:2023-11-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 鹏城实验室
IPC: G06F16/9535 , G06N3/0455 , G06N3/042 , G06N3/048 , G06N3/098
Abstract: 本发明提供了一种联邦跨领域的信息推荐方法、装置、终端设备及介质,所述信息推荐方法从服务器获取预先训练好的跨域序列推荐模型,并且通过用户的交互信息,确定对用户的推荐建议。该模型由服务器将多个本地模型聚合得到,每个本地模型对应一个客户端,并且每个本地模型在对应的客户端本地训练得到,这样,对于客户端来说,不需要将本地的数据上传到服务器,也可以通过服务器训练得到跨域序列推荐模型,然后从服务器获取该模型并进行应用,确保了客户端数据拥有方的数据隐私,此外相比现有的定制化推荐模型,跨域序列推荐模型通过多个本地模型聚合得到并且各本地模型分别由对应客户端本地训练得到,可以有效提高跨域序列推荐模型的性能和质量。
-