-
公开(公告)号:CN112989835B
公开(公告)日:2021-10-08
申请号:CN202110430144.0
申请日:2021-04-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F40/295 , G06N3/04
Abstract: 本发明提供了一种复杂医疗实体抽取方法,包括执行以下任一项步骤:抽取单层连续实体和非连续实体步骤:对原始医疗文本进行预处理,采用基于依存分析的非连续实体双向标注方法进行标注,然后建立非连续实体抽取模型并使用双仿射分类器作为解码器,最后将预测标注还原为实体;抽取单层连续实体和嵌套实体步骤:对原始医疗文本进行预处理,采用基于依存分析的嵌套实体双向标注方法进行标注,然后建立嵌套实体抽取模型并使用双仿射分类器作为解码器,最后将预测标注还原为实体;抽取单层连续实体、非连续实体和嵌套实体步骤。本发明的有益效果是:本发明具有充分挖掘文本上下文信息,提高模型泛化性,增强模型对实体的识别准确率等优点。
-
公开(公告)号:CN112989835A
公开(公告)日:2021-06-18
申请号:CN202110430144.0
申请日:2021-04-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F40/295 , G06N3/04
Abstract: 本发明提供了一种复杂医疗实体抽取方法,包括执行以下任一项步骤:抽取单层连续实体和非连续实体步骤:对原始医疗文本进行预处理,采用基于依存分析的非连续实体双向标注方法进行标注,然后建立非连续实体抽取模型并使用双仿射分类器作为解码器,最后将预测标注还原为实体;抽取单层连续实体和嵌套实体步骤:对原始医疗文本进行预处理,采用基于依存分析的嵌套实体双向标注方法进行标注,然后建立嵌套实体抽取模型并使用双仿射分类器作为解码器,最后将预测标注还原为实体;抽取单层连续实体、非连续实体和嵌套实体步骤。本发明的有益效果是:本发明具有充分挖掘文本上下文信息,提高模型泛化性,增强模型对实体的识别准确率等优点。
-