-
公开(公告)号:CN111243572A
公开(公告)日:2020-06-05
申请号:CN202010035558.9
申请日:2020-01-14
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于说话人博弈的多人语音转换方法,包括以下步骤:训练时,首先使用常用的音频处理工具(如Librosa等)对所有说话人的语音数据进行声学特征的抽取,然后采用以下步骤进行模型训练:(1)鉴别器主要分为编码层和判别层,使用多层CNN堆叠的鉴别器的编码层逐步下采样得到当前声学特征输入的语义信息表示,并作为鉴别器的判别层的输入。本发明还提供了一种基于说话人博弈的多人语音转换系统。本发明的有益效果是:可直接建模转换关系,在充分考虑了说话人数量较多情况下捕捉说话人音色信息的难点,以多说话人博弈建模语音转换关系,可提供更加稳定、性能更好的转换效果。
-
公开(公告)号:CN111243572B
公开(公告)日:2022-09-06
申请号:CN202010035558.9
申请日:2020-01-14
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于说话人博弈的多人语音转换方法,包括以下步骤:训练时,首先使用常用的音频处理工具(如Librosa等)对所有说话人的语音数据进行声学特征的抽取,然后采用以下步骤进行模型训练:(1)鉴别器主要分为编码层和判别层,使用多层CNN堆叠的鉴别器的编码层逐步下采样得到当前声学特征输入的语义信息表示,并作为鉴别器的判别层的输入。本发明还提供了一种基于说话人博弈的多人语音转换系统。本发明的有益效果是:可直接建模转换关系,在充分考虑了说话人数量较多情况下捕捉说话人音色信息的难点,以多说话人博弈建模语音转换关系,可提供更加稳定、性能更好的转换效果。
-