-
公开(公告)号:CN119476410B
公开(公告)日:2025-05-09
申请号:CN202510026657.3
申请日:2025-01-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/096
Abstract: 本发明属于人工智能与深度学习领域,为了解决新旧知识的不平衡和适配性差的问题,提供基于持续知识保护分解的小样本持续学习方法及系统。其中,基于持续知识保护分解的小样本持续学习方法包括基于每个类别的回放样本数据及持续学习模型骨干网络,经奇异值分解得到知识敏感成分和冗余容量成分;在增量适配训练过程中,冻结知识敏感成分所对应的预训练线性权重矩阵;同时利用冗余容量成分来构建可学习的适配器,更新预训练线性权重矩阵;重新获取小样本回放数据,基于更新后的预训练线性权重矩阵再次进行奇异值分解及增量适配训练操作。其通过协方差矩阵的动态更新,实现了新旧知识的平衡和高效适配,提高了分类结果的准确性。
-
公开(公告)号:CN119295886B
公开(公告)日:2025-04-18
申请号:CN202411844794.X
申请日:2024-12-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V10/80 , G06V10/44 , G06V10/774 , G06V10/82 , G06V20/62 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种基于多尺度特征融合的X‑ray图像违禁品检测方法,属于图像处理技术领域。其包括以下步骤:获取X‑ray违禁品数据集,并将数据集划分为训练集和测试集;构建基于多尺度特征融合的X‑ray图像违禁品目标检测模型,所述模型包括图像分支、自适应高低通滤波器模块、文本分支、Neck层和Head头;训练集中图像输入到模型中对模型进行训练;采用损失函数对模型进行优化,得到训练好的模型;测试集中图像输入到训练好的模型中,得到违禁品检测结果。本发明通过图像文本的联合训练,在实时监测任务中提升性能的同时更加高效,减少计算量和内存占用,解决了复杂场景中图像边界细节模糊问题。
-
公开(公告)号:CN119397366A
公开(公告)日:2025-02-07
申请号:CN202510007379.7
申请日:2025-01-03
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F18/241 , G06F18/2135 , G06N3/084 , G06N3/048 , G06N3/0895
Abstract: 本发明属于人工智能与深度学习领域,提供基于自适应适配层选择的小样本持续学习方法及系统。其中,基于自适应适配层选择的小样本持续学习方法包括将预训练线性权重的奇异值;冻结知识敏感成分所对应的预训练线性权重矩阵;自适应确定适配层;基于适配层的适配器矩阵与当前增量适配训练阶段的训练样本特征相乘,得到冗余容量特征;重新获取小样本回放数据,基于更新后的预训练线性权重矩阵依次进行奇异值分解、适配层自适应确定及增量适配训练操作,直至持续学习模型达到设定要求时停止学习,以利用训练好的持续学习模型执行分类任务。其实现了对最小化旧知识干扰的动态适配器选择,保障了小样本持续学习模型的分类准确性。
-
公开(公告)号:CN118918521A
公开(公告)日:2024-11-08
申请号:CN202411413830.7
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(威海)
Abstract: 本发明属于目标视频片段定位领域,提供了一种基于多机协同的目标视频片段定位方法及系统,方法包括获取时间同步的多视角的单帧图像;进行各图像的特征匹配,依据特征匹配关系建立不同视角图像之间的对应关系;基于建立的对应关系,进行多视角图像的融合,得到完备的全景视频特征;响应于查询文本,基于全景视频特征,进行目标视频片段定位。本发明通过特征匹配建立不同视角之间的对应关系,利用视角融合剔除重复冗余信息,生成完整的全景视图,实现不同视角的互补,基于视角融合后的视频实现目标视频片段的高效定位;克服了现有技术中多视角视频匹配难、融合差的缺陷。
-
公开(公告)号:CN119444578B
公开(公告)日:2025-05-09
申请号:CN202510024781.6
申请日:2025-01-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 北京天瞳未来数字科技有限公司
IPC: G06T3/4053 , G06T3/4046 , G06N3/0455 , G06N3/08
Abstract: 本发明属于图像超分辨率重建领域,为解决目前超分辨率重建效果差的问题,提供基于混合专家和稳定扩散的图像超分辨率重建方法及系统。基于混合专家和稳定扩散的图像超分辨率重建方法包括得到多尺度控制条件及空间控制条件;生成加噪特征隐层空间表示;经过多个采样时间步,不断从去噪主干网络的当前采样时间步的输入中减去当前时间步的去噪主干网络预测的噪声,然后将去噪结果作为下一个时间步去噪主干网络的输入,多个采样时间步完成后,得到重建图像的隐层空间表达;将重建图像的隐层空间表达解码至图像像素空间,得到图像超分辨率重建结果,提高了真实清晰的超分辨率重建效果。
-
公开(公告)号:CN119229478B
公开(公告)日:2025-01-28
申请号:CN202411755122.1
申请日:2024-12-03
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 天津理工大学 , 合肥工业大学
IPC: G06V40/10 , G06V10/26 , G06V10/44 , G06V10/74 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于计算机视觉技术领域,提供了一种基于结合人体语义与三维重构的行人搜索方法及系统。步骤如下:首先获取待检索的行人图像,将图像输入训练好的换衣行人特征提取网络,提取在换衣情况下的行人特征,换衣行人重特征提取网络通过换衣模块扩充数据集样本,使模型重点学习衣服区域外的行人特征表示,减轻衣服变化带来的干扰,对行人图像进行三维建模,仅保留行人头部,学习额外的行人体型和头部特征,最后将原始图像特征与三维建模图像特征进行特征融合得到全局的行人特征,利用得到的待检索图像的行人特征与检索图库中的行人特征进行相似度匹配,根据相似性得分进行排序得到行人检索结果。本发明可以大幅度提升行人搜索的准确率和鲁棒性。
-
公开(公告)号:CN119295886A
公开(公告)日:2025-01-10
申请号:CN202411844794.X
申请日:2024-12-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 合肥工业大学
IPC: G06V10/80 , G06V10/44 , G06V10/774 , G06V10/82 , G06V20/62 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种基于多尺度特征融合的X‑ray图像违禁品检测方法,属于图像处理技术领域。其包括以下步骤:获取X‑ray违禁品数据集,并将数据集划分为训练集和测试集;构建基于多尺度特征融合的X‑ray图像违禁品目标检测模型,所述模型包括图像分支、自适应高低通滤波器模块、文本分支、Neck层和Head头;训练集中图像输入到模型中对模型进行训练;采用损失函数对模型进行优化,得到训练好的模型;测试集中图像输入到训练好的模型中,得到违禁品检测结果。本发明通过图像文本的联合训练,在实时监测任务中提升性能的同时更加高效,减少计算量和内存占用,解决了复杂场景中图像边界细节模糊问题。
-
公开(公告)号:CN118918521B
公开(公告)日:2024-12-17
申请号:CN202411413830.7
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 山东大学 , 浙江大华技术股份有限公司 , 哈尔滨工业大学(威海)
Abstract: 本发明属于目标视频片段定位领域,提供了一种基于多机协同的目标视频片段定位方法及系统,方法包括获取时间同步的多视角的单帧图像;进行各图像的特征匹配,依据特征匹配关系建立不同视角图像之间的对应关系;基于建立的对应关系,进行多视角图像的融合,得到完备的全景视频特征;响应于查询文本,基于全景视频特征,进行目标视频片段定位。本发明通过特征匹配建立不同视角之间的对应关系,利用视角融合剔除重复冗余信息,生成完整的全景视图,实现不同视角的互补,基于视角融合后的视频实现目标视频片段的高效定位;克服了现有技术中多视角视频匹配难、融合差的缺陷。
-
公开(公告)号:CN118916518B
公开(公告)日:2024-12-17
申请号:CN202411411688.2
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 山东大学 , 浙江大华技术股份有限公司 , 山东省计算中心(国家超级计算济南中心) , 哈尔滨工业大学(威海)
IPC: G06F16/738 , G06F16/735 , G06N5/022 , G06F16/783
Abstract: 本发明属于数据处理技术领域。提供了一种基于知识增强的视频片段摘要生成方法及系统,抽取视频片段的多个视频帧的信息,得到向量表征集合、物体名称集合、视觉表征集合以及文本表征集合,进一步的得到以物体间常识关系为边的第一常识图、以物体间场景关系为边的第二常识图、以物体间时空关系为边的第三常识图;将第一常识图、第二常识图和第三常识图整合后采用图注意力网络,得到所有物体的表征,将所有物体的表征与向量表征集合拼接成为视频表征,以所述视频表征与提示词文本作为大语言模型的输入,得到视频片段的摘要文本描述;本发明通过融合常识知识、场景知识和时空知识,提升了视频摘要生成的准确性和全面性。
-
公开(公告)号:CN118887134B
公开(公告)日:2024-12-17
申请号:CN202411364592.5
申请日:2024-09-29
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 北京天瞳未来数字科技有限公司
IPC: G06T5/73 , G06T5/50 , G06T5/60 , G06N3/045 , G06N3/0464 , G06N3/0442
Abstract: 本发明属于图像去模糊重建领域,为解决现有技术方法处理大型图像时拼接处常出现错位现象,提供了一种基于图像块知识积累与融合的图像去模糊重建方法及系统。其中,基于图像块知识积累与融合的图像去模糊重建方法包括将模糊图像切分成若干个设定尺寸的模糊图像块;提取每个模糊图像块的浅层特征;对每个模糊图像块的浅层特征进行多步知识积累与融合,再将最后一步得到的每个模糊图像块的特征作为深层特征提取输出;通过残差操作连接每个模糊图像块的深层特征与浅层特征,得到每个模糊图像块的去模糊重建结果;拼接所有模糊图像块的去模糊重建结果,获得去模糊重建图像。其能够获得真实清晰视觉体验的同时,统一图像块边缘,减少错位现象发生。
-
-
-
-
-
-
-
-
-