-
公开(公告)号:CN112861364B
公开(公告)日:2022-08-26
申请号:CN202110201190.3
申请日:2021-02-23
Applicant: 哈尔滨工业大学(威海) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F30/20 , G06K9/62 , G06F119/02
Abstract: 本发明涉及一种基于状态时延转换图二次标注的工控系统设备行为建模方法及装置,包括:(1)状态数据预处理;对状态数据执行离散变量二元化和连续变量二元化操作,生成多组二元状态集合;(2)状态时延转换图构建;对每个二元状态集合构建与之相对应的状态时延转换图;(3)基于环发现的初级标注;采用状态转换边和环的标注流程,进行初级标注;(4)基于时延特征聚类的二次标注;输出为行为模型中的各参数。本发明实现设备状态转换及相应持续时间的描述,本发明将实时水分配系统中过程设备实时产生的状态数据输入行为模型中,可以有效发现过程设备当前状态是否符合行为模型中描述的数据关系及转换关系,实现异常检测。
-
公开(公告)号:CN116032775B
公开(公告)日:2025-01-14
申请号:CN202310025793.1
申请日:2023-01-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 哈尔滨工业大学(威海)
IPC: H04L41/14 , G06N20/10 , G06N3/08 , G06N3/0455 , G06N3/0442 , H04L41/142
Abstract: 本发明涉及一种面向概念漂移的工业控制网络异常检测方法,该方法以实时多维数据流作为目标数据。该方法在初始数据流上训练教师模型和单类支持向量机模型;对于每批次数据流,都基于教师模型训练一个新的学生模型;利用学生模型对当前批次数据流进行异常检测,并利用单类支持向量机模型清洗正常数据中的异常值以获得更新模型所需要的训练数据;利用旧的学生模型获得当前批次数据流和前一批次数据流的异常分数集,然后根据Hoeffding不等式计算模型的可靠性,从而计算模型的参数系数,利用参数系数更新模型以适应概念漂移。本发明可以有效解决异常检测模型在概念发生漂移时的效率衰减问题。
-
公开(公告)号:CN116032775A
公开(公告)日:2023-04-28
申请号:CN202310025793.1
申请日:2023-01-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 哈尔滨工业大学(威海)
IPC: H04L41/14 , G06N20/10 , G06N3/08 , G06N3/0455 , G06N3/0442 , H04L41/142
Abstract: 本发明涉及一种面向概念漂移的工业控制网络异常检测方法,该方法以实时多维数据流作为目标数据。该方法在初始数据流上训练教师模型和单类支持向量机模型;对于每批次数据流,都基于教师模型训练一个新的学生模型;利用学生模型对当前批次数据流进行异常检测,并利用单类支持向量机模型清洗正常数据中的异常值以获得更新模型所需要的训练数据;利用旧的学生模型获得当前批次数据流和前一批次数据流的异常分数集,然后根据Hoeffding不等式计算模型的可靠性,从而计算模型的参数系数,利用参数系数更新模型以适应概念漂移。本发明可以有效解决异常检测模型在概念发生漂移时的效率衰减问题。
-
公开(公告)号:CN112861364A
公开(公告)日:2021-05-28
申请号:CN202110201190.3
申请日:2021-02-23
Applicant: 哈尔滨工业大学(威海) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F30/20 , G06K9/62 , G06F119/02
Abstract: 本发明涉及一种基于状态时延转换图二次标注的工控系统设备行为建模方法及装置,包括:(1)状态数据预处理;对状态数据执行离散变量二元化和连续变量二元化操作,生成多组二元状态集合;(2)状态时延转换图构建;对每个二元状态集合构建与之相对应的状态时延转换图;(3)基于环发现的初级标注;采用状态转换边和环的标注流程,进行初级标注;(4)基于时延特征聚类的二次标注;输出为行为模型中的各参数。本发明实现设备状态转换及相应持续时间的描述,本发明将实时水分配系统中过程设备实时产生的状态数据输入行为模型中,可以有效发现过程设备当前状态是否符合行为模型中描述的数据关系及转换关系,实现异常检测。
-
公开(公告)号:CN110376957B
公开(公告)日:2020-09-25
申请号:CN201910598862.1
申请日:2019-07-04
Applicant: 哈尔滨工业大学(威海) , 山东省计算中心(国家超级计算济南中心)
IPC: G05B19/05
Abstract: 本发明属于网络安全技术领域,具体涉及一种PLC安全事件取证方法。该包括:状态变量的自动获取及安全规约的构建步骤;按照时间窗口从PLC状态运行信息中挖掘状态冲突规则与时序规则的步骤;将所述的状态冲突规则与时序规则与所述的安全规约进行对比,发现与安全规约不一致的规则的步骤;将PLC网络通信记录数据与PLC运行状态数据进行关联分析的步骤;根据所述的关联分析,推理出引发PLC冲突规则或时序规则发生变化的相关PLC操作的步骤。本发明的基于安全规约自动构建的PLC安全事件取证方法。通过对PLC控制逻辑程序AWL文件的分析,自动构建安全规约,并将其与PLC运行状态数据中挖掘的安全规则进行一致性匹配,进一步重构PLC安全事件,完成取证。
-
公开(公告)号:CN110376957A
公开(公告)日:2019-10-25
申请号:CN201910598862.1
申请日:2019-07-04
Applicant: 哈尔滨工业大学(威海) , 山东省计算中心(国家超级计算济南中心)
IPC: G05B19/05
Abstract: 本发明属于网络安全技术领域,具体涉及一种PLC安全事件取证方法。该包括:状态变量的自动获取及安全规约的构建步骤;按照时间窗口从PLC状态运行信息中挖掘状态冲突规则与时序规则的步骤;将所述的状态冲突规则与时序规则与所述的安全规约进行对比,发现与安全规约不一致的规则的步骤;将PLC网络通信记录数据与PLC运行状态数据进行关联分析的步骤;根据所述的关联分析,推理出引发PLC冲突规则或时序规则发生变化的相关PLC操作的步骤。本发明的基于安全规约自动构建的PLC安全事件取证方法。通过对PLC控制逻辑程序AWL文件的分析,自动构建安全规约,并将其与PLC运行状态数据中挖掘的安全规则进行一致性匹配,进一步重构PLC安全事件,完成取证。
-
公开(公告)号:CN119130802B
公开(公告)日:2025-04-22
申请号:CN202411612028.0
申请日:2024-11-13
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T3/4046 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开一种基于动态卷积和特征融合的图像压缩感知重构方法及系统,涉及图像处理技术领域,该方法为:获取待压缩感知重构的原始图像;将原始图像输入至训练完成的图像压缩感知模型中,经模型中的采样子网和初始化重构子网,进行分块采样并提取初始化重构特征图,初始化重构特征图再输入至模型中的深度重构子网,经并行的动态卷积分支和Transformer分支,分别依次提取多尺度的动态卷积局部特征和全局特征,并通过加权特征融合模块对相同尺度的两特征融合,最终输出图像的融合特征,经重构后,模型输出高质量的重构图像。本发明采用动态卷积和Transformer分支结构,结合特征自适应融合,有效提高重构图像的质量。
-
公开(公告)号:CN119376894A
公开(公告)日:2025-01-28
申请号:CN202411576836.6
申请日:2024-11-06
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明提出一种分布式任务资源调度系统及方法,系统包括:资源管理单元,用于根据重要紧急程度,将资源节点划分为常规节点和专用节点;任务管理单元,用于根据分布式任务之间的关系,为任务添加属性标识;根据属性标识确定任务的优先级,基于优先级将任务放入等待队列中排队;所述属性标识包括字符串和标签,字符串包含任务类型、优先级和系统任务编号,标签包含从属关系和依赖关系;调度单元,用于根据任务的优先级进行节点资源配置,并创建契约。本发明通过精细化资源节点划分和任务属性标识,实现了紧急任务优先调度和任务间复杂关系的精准管理,结合先进分配算法和动态调度策略,提升了资源利用率和任务执行效率。
-
公开(公告)号:CN119130802A
公开(公告)日:2024-12-13
申请号:CN202411612028.0
申请日:2024-11-13
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T3/4046 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开一种基于动态卷积和特征融合的图像压缩感知重构方法及系统,涉及图像处理技术领域,该方法为:获取待压缩感知重构的原始图像;将原始图像输入至训练完成的图像压缩感知模型中,经模型中的采样子网和初始化重构子网,进行分块采样并提取初始化重构特征图,初始化重构特征图再输入至模型中的深度重构子网,经并行的动态卷积分支和Transformer分支,分别依次提取多尺度的动态卷积局部特征和全局特征,并通过加权特征融合模块对相同尺度的两特征融合,最终输出图像的融合特征,经重构后,模型输出高质量的重构图像。本发明采用动态卷积和Transformer分支结构,结合特征自适应融合,有效提高重构图像的质量。
-
公开(公告)号:CN119067225A
公开(公告)日:2024-12-03
申请号:CN202411569749.8
申请日:2024-11-06
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N5/045 , G06N3/0455 , G06N3/045 , G06N3/048 , G06N3/084
Abstract: 本发明涉及基于生成式反事实样本差异性的工控异常解释方法及系统,属于工业控制系统异常检测研究技术领域,包括:根据工控异常检测模型预测异常得分结果,通过异常得分结果以及多传感器时间序列数据集,获取工控混合数据集,并进行预处理;将原始时间序列数据集作为输入,工控异常检测模型输出的异常得分作为条件,输入到条件变分自编码器进行训练;收集工控异常检测模型对数据集进行预测时输出的异常阈值,通过改变条件变分自编码器中阈值大小生成反事实样本;通过比较反事实样本与原始收集的多传感器时间序列样本来获得特征重要性分数。本发明提高了工控系统中异常检测和解释的实用性,为系统管理员和操作人员提供了更有力的决策支持工具。
-
-
-
-
-
-
-
-
-