-
公开(公告)号:CN119399342A
公开(公告)日:2025-02-07
申请号:CN202510005486.6
申请日:2025-01-03
Applicant: 哈尔滨工业大学(威海)
Abstract: 本公开的实施例提供了一种基于全局‑局部表面协同感知的物体高斯逆渲染方法;涉及图形逆渲染领域。方法包括进行光线投射与采样,获取采样点;利用几何网络和颜色网络计算采样点的神经辐射距离值和颜色值,获取全局几何表征;根据神经辐射距离值,初始化高斯点云位置;从初始化高斯点云中选取局部控制点,以局部控制点为中心,确定局部采样点并构建局部距离函数;根据局部采样点,利用局部距离函数和神经辐射距离函数,计算局部采样点的局部距离值和全局神经辐射距离值;根据全局几何表征,以这两个距离值为约束,重建几何细节;为高斯点云添加属性值进行材质与光照建模,获取材质属性与光照条件。以此缓解物体表面粗糙、提高细节捕捉能力。
-
公开(公告)号:CN119399342B
公开(公告)日:2025-04-08
申请号:CN202510005486.6
申请日:2025-01-03
Applicant: 哈尔滨工业大学(威海)
Abstract: 本公开的实施例提供了一种基于全局‑局部表面协同感知的物体高斯逆渲染方法;涉及图形逆渲染领域。方法包括进行光线投射与采样,获取采样点;利用几何网络和颜色网络计算采样点的神经辐射距离值和颜色值,获取全局几何表征;根据神经辐射距离值,初始化高斯点云位置;从初始化高斯点云中选取局部控制点,以局部控制点为中心,确定局部采样点并构建局部距离函数;根据局部采样点,利用局部距离函数和神经辐射距离函数,计算局部采样点的局部距离值和全局神经辐射距离值;根据全局几何表征,以这两个距离值为约束,重建几何细节;为高斯点云添加属性值进行材质与光照建模,获取材质属性与光照条件。以此缓解物体表面粗糙、提高细节捕捉能力。
-