一种基于集成学习的特征选择方法及装置

    公开(公告)号:CN108764486A

    公开(公告)日:2018-11-06

    申请号:CN201810499148.2

    申请日:2018-05-23

    Abstract: 本发明涉及一种基于集成学习的特征选择方法,包括:从原始数据集中抽取训练集和验证集;利用训练集对各个基学习器进行预训练,对特征选择结果进行评估,初始化基学习器的投票权重;基于基学习器的投票权重,利用训练集进行多轮集成学习,其中,每轮集成学习包括:根据基学习器的投票权重,将基学习器的特征选择结果进行加权投票,获取集成后的特征选择结果;利用验证集对特征选择结果进行评估,调节基学习器的投票权重。本发明还提供了一种基于集成学习的特征选择装置,上述方法及装置可针对不同原始数据集调节各个基学习器的投票权重,提升集成特征选择方法的普适性。

Patent Agency Ranking