-
公开(公告)号:CN117171448A
公开(公告)日:2023-12-05
申请号:CN202311015948.X
申请日:2023-08-11
Applicant: 哈尔滨工业大学
IPC: G06F16/9536 , G06F16/9535 , G06N3/09 , G06N3/04 , G06N3/045
Abstract: 一种基于图神经网络的多行为社会化推荐方法及系统,涉及推荐技术领域,为了解决现在的推荐方法没有区分与交互行为相关联的信任传播过程。本发明提出一个多行为社会化推荐框架MB‑Soc模型,该模型将细粒度的多行为信息集成到社交推荐架构中,MB‑Soc架构由四个主要部分组成:嵌入层、传播层、多行为集成层和预测层。本发明提出了一种全新的多行为社会化推荐框架MB‑Soc来探索社交推荐中的细粒度信任传播过程,对实体的多种类行为在社交网络中的传播进行区分,并完成在社会化推荐场景下的差分化传播。本发明完成了在真实数据集上的可扩展实验,大量实验证明了本发明所提出的MB‑Soc模型的优越性和有效性。
-
公开(公告)号:CN118797155A
公开(公告)日:2024-10-18
申请号:CN202410789176.3
申请日:2024-06-19
Applicant: 哈尔滨工业大学
IPC: G06F16/9535 , G06F40/30 , G06V30/41 , G06V30/40 , G06V30/148 , G06V30/19 , G06V10/82 , G06N3/042 , G06N3/08
Abstract: 本发明公开了一种基于多视角跨模态语义对齐的多模态推荐方法及系统,涉及多模态推荐技术领域。本发明的技术要点包括:提取训练数据的用户信息、物品信息、用户‑物品交互信息和多模态辅助信息,所述多模态辅助信息包括文本模态和视觉模态;对多模态辅助信息进行处理,获取包含多模态嵌入文本表示和视觉表示的语义信息;将用户信息、物品信息、用户‑物品交互信息和语义信息输入多模态神经网络模型中进行训练;利用训练好的多模态神经网络模型进行多模态推荐。本发明解决了模态间语义鸿沟问题,通过多视角语义建模进行细粒度模态语义对齐,实验结果证明了本发明的优越性和有效性。
-
公开(公告)号:CN118797155B
公开(公告)日:2025-04-22
申请号:CN202410789176.3
申请日:2024-06-19
Applicant: 哈尔滨工业大学
IPC: G06F16/9535 , G06F40/30 , G06V30/41 , G06V30/40 , G06V30/148 , G06V30/19 , G06V10/82 , G06N3/042 , G06N3/08
Abstract: 本发明公开了一种基于多视角跨模态语义对齐的多模态推荐方法及系统,涉及多模态推荐技术领域。本发明的技术要点包括:提取训练数据的用户信息、物品信息、用户‑物品交互信息和多模态辅助信息,所述多模态辅助信息包括文本模态和视觉模态;对多模态辅助信息进行处理,获取包含多模态嵌入文本表示和视觉表示的语义信息;将用户信息、物品信息、用户‑物品交互信息和语义信息输入多模态神经网络模型中进行训练;利用训练好的多模态神经网络模型进行多模态推荐。本发明解决了模态间语义鸿沟问题,通过多视角语义建模进行细粒度模态语义对齐,实验结果证明了本发明的优越性和有效性。
-
公开(公告)号:CN117171448B
公开(公告)日:2024-05-28
申请号:CN202311015948.X
申请日:2023-08-11
Applicant: 哈尔滨工业大学
IPC: G06F16/9536 , G06F16/9535 , G06N3/09 , G06N3/04 , G06N3/045
Abstract: 一种基于图神经网络的多行为社会化推荐方法及系统,涉及推荐技术领域,为了解决现在的推荐方法没有区分与交互行为相关联的信任传播过程。本发明提出一个多行为社会化推荐框架MB‑Soc模型,该模型将细粒度的多行为信息集成到社交推荐架构中,MB‑Soc架构由四个主要部分组成:嵌入层、传播层、多行为集成层和预测层。本发明提出了一种全新的多行为社会化推荐框架MB‑Soc来探索社交推荐中的细粒度信任传播过程,对实体的多种类行为在社交网络中的传播进行区分,并完成在社会化推荐场景下的差分化传播。本发明完成了在真实数据集上的可扩展实验,大量实验证明了本发明所提出的MB‑Soc模型的优越性和有效性。
-
-
-