-
公开(公告)号:CN110929024A
公开(公告)日:2020-03-27
申请号:CN201911262119.5
申请日:2019-12-10
Applicant: 哈尔滨工业大学
IPC: G06F16/34 , G06F40/211 , G06F40/289 , G06N3/04 , G06N3/08
Abstract: 一种基于多模型融合的抽取式文本摘要生成方法,本发明涉及抽取式文本摘要生成方法。本发明的目的是为了解决现有的单一的抽取式模型无法学习到摘要文本的全部重要信息,导致摘要抽取准确率及召回率低的问题。过程为:一、将每个句子的词向量输入双向双层LSTM,输出全文中的每一个句子的特征表示;二、将句子的特征表示按文章顺序输入双向双层LSTM,输出隐层序列,并利用最大池化层得到池化后的向量作为全文的特征表示;三、构建序列预测模型架构;四、构建分段联合序列预测摘要模型;五、构建编码器解码器模型;六、构建加入强化学习机制的编码器解码器联合训练模型;七、使用模型融合方法生成文本摘要。本发明用于抽取式文本摘要领域。
-
公开(公告)号:CN110929024B
公开(公告)日:2021-07-02
申请号:CN201911262119.5
申请日:2019-12-10
Applicant: 哈尔滨工业大学
IPC: G06F16/34 , G06F40/211 , G06F40/289 , G06N3/04 , G06N3/08
Abstract: 一种基于多模型融合的抽取式文本摘要生成方法,本发明涉及抽取式文本摘要生成方法。本发明的目的是为了解决现有的单一的抽取式模型无法学习到摘要文本的全部重要信息,导致摘要抽取准确率及召回率低的问题。过程为:一、将每个句子的词向量输入双向双层LSTM,输出全文中的每一个句子的特征表示;二、将句子的特征表示按文章顺序输入双向双层LSTM,输出隐层序列,并利用最大池化层得到池化后的向量作为全文的特征表示;三、构建序列预测模型架构;四、构建分段联合序列预测摘要模型;五、构建编码器解码器模型;六、构建加入强化学习机制的编码器解码器联合训练模型;七、使用模型融合方法生成文本摘要。本发明用于抽取式文本摘要领域。
-