-
公开(公告)号:CN108171663A
公开(公告)日:2018-06-15
申请号:CN201711416650.4
申请日:2017-12-22
Applicant: 哈尔滨工业大学
Abstract: 基于特征图最近邻替换的卷积神经网络的图像填充系统,属于图像填充技术领域,解决了现有图像填充方法无法快速地获得整体语义一致且具有良好清晰度的填充图像的问题。所述系统:生成网络对待填充图像先编码后解码,得到已填充图像。生成网络的解码器包括N个反卷积层,对于第一反卷积层~第N‑1反卷积层中的任意M个反卷积层,生成网络基于每个反卷积层的输出结果和该反卷积层对应的卷积层的输出结果,并采用特征图最近邻替换的方式得到附加特征图,并将每个反卷积层的输出结果、该反卷积层对应的卷积层的输出结果和附加特征图共同作为下一反卷积层的输入对象。判别网络用于判断已填充图像是否为待填充图像对应的真实图像。
-
公开(公告)号:CN108171663B
公开(公告)日:2021-05-25
申请号:CN201711416650.4
申请日:2017-12-22
Applicant: 哈尔滨工业大学
Abstract: 基于特征图最近邻替换的卷积神经网络的图像填充系统,属于图像填充技术领域,解决了现有图像填充方法无法快速地获得整体语义一致且具有良好清晰度的填充图像的问题。所述系统:生成网络对待填充图像先编码后解码,得到已填充图像。生成网络的解码器包括N个反卷积层,对于第一反卷积层~第N‑1反卷积层中的任意M个反卷积层,生成网络基于每个反卷积层的输出结果和该反卷积层对应的卷积层的输出结果,并采用特征图最近邻替换的方式得到附加特征图,并将每个反卷积层的输出结果、该反卷积层对应的卷积层的输出结果和附加特征图共同作为下一反卷积层的输入对象。判别网络用于判断已填充图像是否为待填充图像对应的真实图像。
-