一种基于图神经网络的细粒度情感分类方法

    公开(公告)号:CN113641822A

    公开(公告)日:2021-11-12

    申请号:CN202110922884.6

    申请日:2021-08-11

    Abstract: 一种基于图神经网络的细粒度情感分类方法,涉及自然语言处理技术领域,针对现有技术中由于复杂的句法结构,相关情感词的信息会衰减,进而导致情感分类准确率低的问题,本申请利用评价对象中心化图以缓解基于评价对象的情感分类任务中情感信息在依赖路径上的衰减问题。具体来说,本申请将一个句子中的所有单词直接与评价对象联系起来。此外,为了区分不同词的重要性,并继承句法结构带来的优势,本申请根据相对依存距离对每个词赋予了不同的权重。在此基础上,本申请评价对象为中心的图卷积网,将特定方面的情感特征与上下文信息进行交互,有效捕捉评价对象和潜在情感词之间的关联,进而提高了情感分类的准确率。

    一种基于图神经网络的细粒度情感分类方法

    公开(公告)号:CN113641822B

    公开(公告)日:2022-05-24

    申请号:CN202110922884.6

    申请日:2021-08-11

    Abstract: 一种基于图神经网络的细粒度情感分类方法,涉及自然语言处理技术领域,针对现有技术中由于复杂的句法结构,相关情感词的信息会衰减,进而导致情感分类准确率低的问题,本申请利用评价对象中心化图以缓解基于评价对象的情感分类任务中情感信息在依赖路径上的衰减问题。具体来说,本申请将一个句子中的所有单词直接与评价对象联系起来。此外,为了区分不同词的重要性,并继承句法结构带来的优势,本申请根据相对依存距离对每个词赋予了不同的权重。在此基础上,本申请评价对象为中心的图卷积网,将特定方面的情感特征与上下文信息进行交互,有效捕捉评价对象和潜在情感词之间的关联,进而提高了情感分类的准确率。

Patent Agency Ranking