基于机器学习的关键焊接工艺参数预测方法

    公开(公告)号:CN113762410B

    公开(公告)日:2023-12-08

    申请号:CN202111093542.4

    申请日:2021-09-17

    Abstract: 基于机器学习的关键焊接工艺参数预测方法,属于焊接工艺的参数预测领域。本发明解决了现有影响地下工程装备焊接质量的工艺参数复杂,导致不易对参数进行调试,进而导致地下工程装备关键部件的焊接件质量差的问题。本发明方法包括:获取焊接电流、焊接电压和送丝速度;建立送丝速度—焊接电流拟合模型,根据焊接电流预测送丝速度;建立焊接电压—焊接电流的点预测拟合模型,根据焊接电流预测焊接电压点预测值;根据焊接电压点预测值确定焊接电压的取值范围;根据获取的焊接电流和焊接速度,得到送丝速度和焊接电压的取值;将焊接电流、最终焊接电压、送丝速度和焊接速度输入至CLOOS焊接机器人系统,实现焊接工艺的自动化。本发明用于焊接工艺的参数预测。

    基于课堂式生成对抗网络模型的机械设备故障信号识别方法

    公开(公告)号:CN112308038B

    公开(公告)日:2022-09-27

    申请号:CN202011340437.1

    申请日:2020-11-25

    Abstract: 基于课堂式生成对抗网络模型的机械设备故障信号识别方法,涉及机故障信号识别领域。本发明是为了解决现有的机械设备故障信号识别方法准确率不高的问题。本发明所述的包含一个生成器和多个判别器的基于课堂式生成对抗网络模型识别机械设备故障信号的方法包括:获取机械设备正常振动信号和机械设备故障振动信号;将获取的机械设备信号划分为测试集和训练集;设置课堂式生成对抗网络结构参数;获取一个批量的样本;计算生成能力的提升值;计算每个生成器对判别器损失函数值影响权重;计算判别器的损失函数;计算生成器的损失函数;测试判别器的准确性;将机械设备振动信号输入准确率最高的分类模型得到识别结果。

    基于酵母菌出芽繁殖优化的机队保有率优化方法

    公开(公告)号:CN107944623B

    公开(公告)日:2021-08-31

    申请号:CN201711175073.4

    申请日:2017-11-22

    Abstract: 一种基于酵母菌出芽繁殖的优化方法及其应用,本发明涉及机队保有率优化方法,为了解决现有技术当机队保有率优化模型最优解不唯一时,无法获得最优的机队保有率的问题。本发明将培养基视为优化问题连续型解的区域约束;接种酵母菌过程视为初始解生成过程;酵母菌在培养基上的出芽繁殖视为解的优化过程:繁殖出的酵母菌落入培养基内为优解,可存活并可继续繁殖;否则则为劣解,不能存活也不可能继续繁殖。考虑到优化问题的连续型最优解可能是分段连续或者初始解落入到非培养基的情况,让处于非培养基中的劣解可以寻找并迁移到最优繁殖区域进行繁殖。繁殖出的优解集合所覆盖的区域就是优化问题的连续型最优解。本发明用于飞机维修管理领域。

    一种基于CBM的机队维修决策方法

    公开(公告)号:CN107730014B

    公开(公告)日:2021-07-13

    申请号:CN201710993647.2

    申请日:2017-10-23

    Abstract: 一种基于CBM的机队维修决策方法,本发明涉及基于CBM的机队维修决策方法。本发明为了解决现有方法是针对民用航空发动机和非结构件,单机保有率达不到训练要求,及没有考虑机队的维修成本的问题。本发明包括:一:进行飞机疲劳结构的剩余寿命预测,得到疲劳结构的剩余寿命;二:根据得到的疲劳结构的剩余寿命,建立单机维修成本决策优化模型;三:根据步骤二建立的单机维修成本决策优化模型,建立机队的维修成本决策优化模型;四:建立机队保有率优化模型;五:根据步骤三和步骤四建立机队的多目标优化决策模型,根据多目标优化决策模型采用非支配排序的多目标优化算法方法确定机队各飞机疲劳结构的最优维修方案。本发明用于机队维修领域。

    一种基于UKF的飞机疲劳结构剩余寿命预测方法

    公开(公告)号:CN107577902B

    公开(公告)日:2020-11-13

    申请号:CN201710995498.3

    申请日:2017-10-23

    Abstract: 一种基于UKF的飞机疲劳结构剩余寿命预测方法,本发明涉及基于UKF的飞机疲劳结构剩余寿命预测方法。本发明为了解决现有方法飞机疲劳结构剩余寿命低的缺点。本发明包括:步骤一:基于Paris疲劳裂纹扩展公式,建立状态空间评估模型;步骤二:对步骤一建立的状态空间评估模型利用无迹卡尔曼滤波算法进行滤波,得到准确的状态参数向量xk;步骤三:利用步骤二得到的准确的状态参数向量xk,进行结构的裂纹扩展剩余寿命预测。通过对比实验可知,本发明算法的预测结果优于EKF算法,且预测得到的RUL绝对相对误差小于10%。本发明应用于飞机疲劳结构剩余寿命预测领域。

    一种基于变样本栈式自编码网络的模式识别方法

    公开(公告)号:CN109558873A

    公开(公告)日:2019-04-02

    申请号:CN201811467778.8

    申请日:2018-12-03

    Abstract: 一种基于变样本栈式自编码网络的模式识别方法,属于大数据模式识别领域。现有的模式识别方法在数据维度逐渐增高时,会出现模式识别精度和效率下降问题的问题。一种基于变样本栈式自编码网络的模式识别方法,一、通过变样本栈式自编码网络滤除高维空间样本中噪声,映射成低维空间去噪样本集合;二、利用步骤一获得的低维空间去噪样本集合对样本训练分类器进行训练,得到低维空间去噪样本集合中的典型样本集合;三、基于步骤二获得的典型样本集合,采用逆映射到高维空间获得高维空间典型样本集合,并利用待测试样本与高维空间典型样本集合的相似度识别方法进行模式识别,完成待测试样本的类别判定。本发明与其它算法进行对比,提高了分类准确率。

    一种基于自注意力集成学习的起落架性能预测方法

    公开(公告)号:CN116050547B

    公开(公告)日:2024-09-03

    申请号:CN202310063619.6

    申请日:2023-01-12

    Abstract: 一种基于自注意力集成学习的起落架性能预测方法,涉及起落架性能预测领域。本发明是为了解决现有起落架性能预测方法还存在计算效率和预测精度不高的问题。本发明包括:获取待预测的起落架性能数据的关键特征,将待预测的起落架性能数据的关键特征数据输入到起落架性能预测模型中获得起落架的重心垂直载荷、重心垂向位移;所述起落架性能预测模型通过以下方式获得:获取起落架性能数据;利用MCA模型剔除起落架性能数据特征中的无效特征和冗余特征,获得起落架性能数据中的关键特征数据;利用关键特征数据对AMLP进行训练获得训练好的AMLP模型;采用网格搜索法对训练好的AMLP模型的超参数进行调优,获得起落架性能预测模型。本发明用于预测起落架性能。

    一种面向机械加工工艺知识图谱的实体和关系预测方法

    公开(公告)号:CN113033914B

    公开(公告)日:2022-03-25

    申请号:CN202110411649.2

    申请日:2021-04-16

    Abstract: 一种面向机械加工工艺知识图谱的实体和关系预测方法,它属于机械加工工艺知识图谱中实体和关系预测技术领域。本发明解决了采用目前的翻译模型对机械加工工艺中的实体和关系预测的准确率低的问题。本发明将机械加工工艺知识图谱的复杂关系延展为一对一对多,多对一对一,多对一对多,一对多对一,一对多对多,一对多对多,多对多对多类型。基于延展的复杂关系和机械加工工艺领域特性提出了实体关系双投影超平面模型来实现加工工艺实体和加工工艺关系的准确预测。本发明可以用于对机械加工工艺知识图谱中实体和关系的预测。

    基于机器学习的关键焊接工艺参数预测方法

    公开(公告)号:CN113762410A

    公开(公告)日:2021-12-07

    申请号:CN202111093542.4

    申请日:2021-09-17

    Abstract: 基于机器学习的关键焊接工艺参数预测方法,属于焊接工艺的参数预测领域。本发明解决了现有影响地下工程装备焊接质量的工艺参数复杂,导致不易对参数进行调试,进而导致地下工程装备关键部件的焊接件质量差的问题。本发明方法包括:获取焊接电流、焊接电压和送丝速度;建立送丝速度—焊接电流拟合模型,根据焊接电流预测送丝速度;建立焊接电压—焊接电流的点预测拟合模型,根据焊接电流预测焊接电压点预测值;根据焊接电压点预测值确定焊接电压的取值范围;根据获取的焊接电流和焊接速度,得到送丝速度和焊接电压的取值;将焊接电流、最终焊接电压、送丝速度和焊接速度输入至CLOOS焊接机器人系统,实现焊接工艺的自动化。本发明用于焊接工艺的参数预测。

    基于深度Croston方法的航空发动机备用需求预测方法

    公开(公告)号:CN110782083A

    公开(公告)日:2020-02-11

    申请号:CN201911011999.9

    申请日:2019-10-23

    Abstract: 基于深度Croston方法的航空发动机备用需求预测方法,本发明涉及本发明涉及航空发动机备用需求预测方法。本发明的目的是为了解决现有方法对航空发动机备用需求预测准确率低的问题。过程为:一、将间断型备发需求原始观测序列转换为备发需求间隔序列和备发需求量序列;二、将机队状态表征量作为备发需求间隔序列和备发需求量序列的协变量;三、建立备发需求间隔和备发需求量预测模型;得到训练好的备发需求间隔和备发需求量预测模型;将待测样本集分别输入训练好的预测模型,得到备发需求间隔和备发需求量预测结果;四、将预测结果转换为间断型备发需求序列;五、基于预测结果预测偏离成本总损失。本发明用于航空发动机领域。

Patent Agency Ranking