-
公开(公告)号:CN119583368A
公开(公告)日:2025-03-07
申请号:CN202411431193.6
申请日:2024-10-14
Applicant: 哈尔滨工业大学
IPC: H04L41/147 , G06N3/0442 , G06N3/049 , G06N3/048 , G06N3/042 , G06N3/08 , G06F18/22 , G06F18/24 , H04L41/14 , H04L41/16
Abstract: 一种基于分层对比学习的时序异构网络链路预测方法及系统,涉及时序异构网络预测技术领域。本发明的目的是从节点级,边级和时间级三个不同微观视角对网络中的空间复杂性和时序复杂性进行挖掘和建模,以实现现实世界中时序异构网络中的节点连接行为的预测。技术要点:通过提出的链路预测方法存储节点表示向量的异构结构信息,捕获异构网络的时序演化过程,同时,捕捉异构快照之间的拓扑依赖关系,刻画复杂时序异构网络中的分布模式,从而预测实体之间动态和复杂的连接关系。不同节点和边之间的细粒度差分关系以及演变范式的区别直接影响表征学习,很大程度上影响链接预测的性能。本发明在社交推荐、交通管理中用于预测实体之间动态和复杂的连接关系。
-
公开(公告)号:CN116842398B
公开(公告)日:2024-06-28
申请号:CN202310765614.8
申请日:2023-06-27
Applicant: 哈尔滨工业大学
IPC: G06F18/22 , G06N3/0499 , G06N3/048 , G06N3/0464 , G06F18/25 , G06N3/0455
Abstract: 本发明公开了一种基于屏蔽自注意力网络的话题感知信息转发预测方法及系统,涉及信息转发预测技术领域。本发明的技术要点包括:提取消息中的话题表示,将话题表示与用户嵌入进行融合表示,获得用户‑话题依赖表示;构建包含上下文编码器、掩码生成器、掩码编码器的屏蔽自注意力网络,将用户‑话题依赖表示输入屏蔽自注意力网络,获得上下文用户依赖感知的用户表示;利用注意力机制计算目标用户与历史感染用户列表的相似度,以对用户表示进行优化重建;通过计算对应优化重建后用户表示的级联表示与下一个用户之间的似然关系来获取下一个用户的激活概率。本发明可为舆情研判、个性化推荐、热点话题识别等应用提供有价值的决策辅助支撑。
-
公开(公告)号:CN116842398A
公开(公告)日:2023-10-03
申请号:CN202310765614.8
申请日:2023-06-27
Applicant: 哈尔滨工业大学
IPC: G06F18/22 , G06N3/0499 , G06N3/048 , G06N3/0464 , G06F18/25 , G06N3/0455
Abstract: 本发明公开了一种基于屏蔽自注意力网络的话题感知信息转发预测方法及系统,涉及信息转发预测技术领域。本发明的技术要点包括:提取消息中的话题表示,将话题表示与用户嵌入进行融合表示,获得用户‑话题依赖表示;构建包含上下文编码器、掩码生成器、掩码编码器的屏蔽自注意力网络,将用户‑话题依赖表示输入屏蔽自注意力网络,获得上下文用户依赖感知的用户表示;利用注意力机制计算目标用户与历史感染用户列表的相似度,以对用户表示进行优化重建;通过计算对应优化重建后用户表示的级联表示与下一个用户之间的似然关系来获取下一个用户的激活概率。本发明可为舆情研判、个性化推荐、热点话题识别等应用提供有价值的决策辅助支撑。
-
-