基于多重优化的MR图像深度网络超分辨方法

    公开(公告)号:CN113744132B

    公开(公告)日:2024-09-27

    申请号:CN202111055372.0

    申请日:2021-09-09

    Abstract: 基于多重优化的MR图像深度网络超分辨方法,解决了现有利用深度学习网络重建超分辨率MR图像时难以在模型复杂度和训练难度取得较好平衡的问题,属于图像超分辨率重建技术领域。本发明包括:获取MR图像训练集,包括多切片的低分辨MR图像集和对应的多切片高分辨MR图像集;利用MR图像训练集对超分辨深度学习网络进行训练,超分辨深度学习网络包括融合层和多个超分辨网络,每个超分辨网络的输入为低分辨MR图像,每个超分辨网络的输出同时输入到融合层,融合层输出高分辨MR图像;利用训练完成后的超分辨深度学习网络将低分辨MR图像重建为高分辨MR图像。超分辨网络和融合层在训练时,可采用不同的损失函数的级联。

    基于多重优化的MR图像深度网络超分辨方法

    公开(公告)号:CN113744132A

    公开(公告)日:2021-12-03

    申请号:CN202111055372.0

    申请日:2021-09-09

    Abstract: 基于多重优化的MR图像深度网络超分辨方法,解决了现有利用深度学习网络重建超分辨率MR图像时难以在模型复杂度和训练难度取得较好平衡的问题,属于图像超分辨率重建技术领域。本发明包括:获取MR图像训练集,包括多切片的低分辨MR图像集和对应的多切片高分辨MR图像集;利用MR图像训练集对超分辨深度学习网络进行训练,超分辨深度学习网络包括融合层和多个超分辨网络,每个超分辨网络的输入为低分辨MR图像,每个超分辨网络的输出同时输入到融合层,融合层输出高分辨MR图像;利用训练完成后的超分辨深度学习网络将低分辨MR图像重建为高分辨MR图像。超分辨网络和融合层在训练时,可采用不同的损失函数的级联。

Patent Agency Ranking