基于端到端深度神经网络的RRU模块物件位姿检测方法

    公开(公告)号:CN109409327B

    公开(公告)日:2021-06-08

    申请号:CN201811333891.7

    申请日:2018-11-09

    Abstract: 基于端到端深度神经网络的RRU模块物件位姿检测方法,本发明涉及RRU模块物件位置与姿态检测方法。本发明的目的是为了解决现有深度神经网络进行目标定位和姿态检测时获得的是粗略的检测结果不能满足工业要求,以及网络训练的复杂、检测速度慢的问题。一:采集的物件图像;二:进行关键点标注;三:进行图像扩增,将扩增后的图像样本分为训练集和验证集;四:进行关键点标注,将图像文件和标签文件打包;五:搭建神经网络模型;六:得到训练好的神经网络;七:采集图像;八:得到边界框中心点位置;九:筛选出物件四个角点位置;十:计算出物件相对于水平位置的旋转角度。本发明用于RRU模块物件位姿检测领域。

    基于端到端深度神经网络的RRU模块物件位姿检测方法

    公开(公告)号:CN109409327A

    公开(公告)日:2019-03-01

    申请号:CN201811333891.7

    申请日:2018-11-09

    Abstract: 基于端到端深度神经网络的RRU模块物件位姿检测方法,本发明涉及RRU模块物件位置与姿态检测方法。本发明的目的是为了解决现有深度神经网络进行目标定位和姿态检测时获得的是粗略的检测结果不能满足工业要求,以及网络训练的复杂、检测速度慢的问题。一:采集的物件图像;二:进行关键点标注;三:进行图像扩增,将扩增后的图像样本分为训练集和验证集;四:进行关键点标注,将图像文件和标签文件打包;五:搭建神经网络模型;六:得到训练好的神经网络;七:采集图像;八:得到边界框中心点位置;九:筛选出物件四个角点位置;十:计算出物件相对于水平位置的旋转角度。本发明用于RRU模块物件位姿检测领域。

Patent Agency Ranking