-
公开(公告)号:CN111461172A
公开(公告)日:2020-07-28
申请号:CN202010144828.X
申请日:2020-03-04
Applicant: 哈尔滨工业大学
Abstract: 基于二维点组卷积的高光谱遥感数据的轻量级特征融合方法,属于遥感数据特征提取技术领域。本发明是为了解决现有基于深度学习的高光谱遥感数据特征融合方法需要大量的融合参数问题。本发明所述方法针对征融合前的处理过程处理后得到的特征,进行二维点组卷积操作;二维点组卷积的过程中,首先将融合前的特征先分成若干个组,然后每组各自单独进行特征融合,融合后的特征为每组的局部特征;对每层融合后的局部特征进行洗牌,使得洗牌后的每组特征来自于洗牌前各组的局部特征;对洗牌后的特征再进行二维点组卷积操作,进行特征融合,此时融合后的特征为全局特征。本发明用于高光谱遥感数据的特征融合。
-
公开(公告)号:CN109753946A
公开(公告)日:2019-05-14
申请号:CN201910063682.3
申请日:2019-01-23
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了一种基于身体关键点监督的真实场景行人小目标检测网络及检测方法,属于计算机视觉行人检测技术领域。所述检测网络包括超分辨率网络、关键点检测网络和行人分类网络:所述检测方法首先准备训练样本,然后,利用基准行人检测器产生候选区域图像,通过超分辨率网络生成与低分辨率图像对应的高分辨率图像,根据行人身体关键点来监督训练超分辨率网络,最后利用行人分类网络判定输入的图像是真实的高分辨率图像还是超分辨率网络生成的超分辨率图像,同时实现与超分辨率网络的对抗训练,以及用于判定输入的图像是行人图像还是背景图像,进而完成真实场景中行人小目标的检测。使用所述方法可以实现真实场景中的微小行人检测。
-
公开(公告)号:CN107730553A
公开(公告)日:2018-02-23
申请号:CN201711065776.1
申请日:2017-11-02
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种基于伪真值搜寻法的弱监督物体检测方法,是为了解决现有的全监督物体检测器需要依靠大量的有标注信息的数据库,以及当图片中含有多个物体且物体相互遮挡时物体位置检测不准确而提出的,包括:将训练样本中的图片输入到弱监督物体检测器中;将弱监督物体检测器的输出结果进行非极大抑制处理(NMS),将超过预定的得分阈值的边界框保留;在保留下来的边界框中,删除被完全包含在其他边界框中的边界框;计算该边界框与其他边界框的重合面积,将重合面积大于一定阈值的边界框进行融合;将融合后的边界框的信息作为伪真值信息输入给全监督物体检测器,得到检测结果。本发明适用于物体检测技术,尤其是真实场景中的一般物体检测技术。
-
公开(公告)号:CN111144423B
公开(公告)日:2023-05-05
申请号:CN201911369736.5
申请日:2019-12-26
Applicant: 哈尔滨工业大学
IPC: G06V10/40 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 基于一维组卷积神经网络的高光谱遥感数据多尺度光谱特征提取方法,属于遥感数据特征提取技术领域。为了解决现有基于卷积神经网络高光谱遥感数据的光谱特征提取尺度单一的问题,同时解决高光谱遥感数据的高维度信号造成的维数灾难的问题。本发明中以每个尺度值减一后的值与对应的分组数的乘积相等为原则,直接将高维的高光谱向量信号在光谱波段维度上等分成若干组,每个尺度利用多个不同的滤波器对每段高维的高光谱向量信号进行单独的一维常规卷积操作,通过若干组操作实现快速降低光谱向量的特征维度。本发明适用于高光谱遥感数据的多尺度光谱特征提取。
-
公开(公告)号:CN108334847B
公开(公告)日:2019-10-22
申请号:CN201810119263.2
申请日:2018-02-06
Applicant: 哈尔滨工业大学
Abstract: 本发明提供一种真实场景下的基于深度学习的人脸识别方法,是为了解决现有真实场景下的人脸识别方法只能解决单一因素影响,而不能解决姿势、光照等因素的影响而提出的,包括:使用一个现有的人脸检测器预测训练数据库中每个图片的人脸位置,并截取保存真实的人脸和非人脸图像;根据人脸图像和非人脸图片降采样得到相应的低分辨率图像;构建生成对抗网络,生成对抗网络包括生成器和鉴别器;生成器进一步包括上采样网络以及优化网络;使用高分辨率人脸、非人脸图像以及对应的低分辨率人脸、非人脸图像对生成对抗网络进行训练;依据鉴别器对从现有的人脸检测器得到的人脸候选区域的得分在输入图片中标记出人脸的位置。本发明适用于人脸的识别检测。
-
公开(公告)号:CN109145958A
公开(公告)日:2019-01-04
申请号:CN201810842331.8
申请日:2018-07-27
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了一种基于多任务生成对抗网络的真实场景小物体检测方法,属于计算机视觉领域中的物体检测技术领域。所述检测方法将多任务生成对抗网络引入到物体检测中,通过让多任务生成对抗网络中的生成器网络和鉴别器网络相互博弈的方式进行学习,实现小物体检测网络的建立进而完成图像的小物体检测。所述小物体检测方法克服了现阶段的物体检测方法在真实场景中检测正确率低的困难,促进了基于深度学习的物体检测方法在真实场景下的应用。
-
公开(公告)号:CN108334848A
公开(公告)日:2018-07-27
申请号:CN201810119264.7
申请日:2018-02-06
Applicant: 哈尔滨工业大学
CPC classification number: G06K9/00228 , G06K9/00288 , G06K9/6256 , G06N3/0454 , G06N3/08 , G06T3/4007 , G06T3/4076 , G06T2207/20081 , G06T2207/20084 , G06T2207/30201
Abstract: 本发明提供一种基于生成对抗网络的微小人脸识别方法。本发明是为了解决现阶段的人脸检测技术无法捕获复杂背景下的微小人脸,当基于失真的图像进行人脸检测时会导致检测率严重下降的缺点而提出的,包括:使用一个现有的人脸检测器预测训练数据库中每个图片的人脸位置,并截取保存真实的人脸和非人脸图像;根据人脸图像和非人脸图片降采样得到相应的低分辨率图像;构建生成对抗网络,生成对抗网络包括生成器和鉴别器;使用高分辨率人脸、非人脸图像以及对应的低分辨率人脸、非人脸图像对生成对抗网络进行训练;依据鉴别器对从现有的人脸检测器得到的人脸候选区域的得分在输入图片中标记出人脸的位置。本发明适用于人脸的识别检测。
-
公开(公告)号:CN107341517B
公开(公告)日:2020-08-11
申请号:CN201710551916.X
申请日:2017-07-07
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及机器视觉领域中的物体检定技术,尤其涉及一种基于深度学习层级间特征融合的多尺度小物体检测方法,本发明为了解决现有物体检测在真实场景下检测精度非常低,受尺度大小约束,对于小物体的检测非常困难的缺点,而提出一种基于深度学习层级间特征融合的多尺度小物体检测方法,本发明以真实场景下的图像为研究对象,通过构建卷积神经网络提取输入图像的特征,利用候选区域生成网络产生较少的候选区域,之后将各个候选区域映射到经卷积神经网络生成的特征图上得到每个候选区域的特征,经池化层后得到固定大小、固定维度的特征输入到全连接层,全连接层后的两个分支分别输出识别类别和回归后的位置。本发明适用于机器视觉领域中的物体检定。
-
公开(公告)号:CN111062403A
公开(公告)日:2020-04-24
申请号:CN201911369737.X
申请日:2019-12-26
Applicant: 哈尔滨工业大学
Abstract: 基于一维组卷积神经网络的高光谱遥感数据深度光谱特征提取方法,属于遥感数据特征提取技术领域。为了解决现有的基于深度学习方法需要大量标记的训练样本学习模型的参数,存在针对高光谱遥感数据标记训练样本稀少的情况光谱特征提取效果差的问题。本发明所述方法利用D个一维滤波器对归一化数据进行卷积操作,在特征通道方向分成g组;每组利用多个一维滤波器进行一维卷积操作,将每组卷积结果在特征通道方向上堆栈在一起;进行全局和局部相关性并进行加权,洗牌,然后进行一维卷积操作,提取光谱特征;进而确定高光谱遥感数据深度光谱特征提取模型,训练高光谱遥感数据深度光谱特征提取模型。本发明用于高光谱遥感数据深度光谱特征的提取。
-
公开(公告)号:CN108334847A
公开(公告)日:2018-07-27
申请号:CN201810119263.2
申请日:2018-02-06
Applicant: 哈尔滨工业大学
Abstract: 本发明提供一种真实场景下的基于深度学习的人脸识别方法,是为了解决现有真实场景下的人脸识别方法只能解决单一因素影响,而不能解决姿势、光照等因素的影响而提出的,包括:使用一个现有的人脸检测器预测训练数据库中每个图片的人脸位置,并截取保存真实的人脸和非人脸图像;根据人脸图像和非人脸图片降采样得到相应的低分辨率图像;构建生成对抗网络,生成对抗网络包括生成器和鉴别器;生成器进一步包括上采样网络以及优化网络;使用高分辨率人脸、非人脸图像以及对应的低分辨率人脸、非人脸图像对生成对抗网络进行训练;依据鉴别器对从现有的人脸检测器得到的人脸候选区域的得分在输入图片中标记出人脸的位置。本发明适用于人脸的识别检测。
-
-
-
-
-
-
-
-
-