-
公开(公告)号:CN110472253A
公开(公告)日:2019-11-19
申请号:CN201910754140.0
申请日:2019-08-15
Applicant: 哈尔滨工业大学
IPC: G06F17/28
Abstract: 本发明公开了一种基于混合粒度的句子级机器翻译质量估计模型训练方法,所述训练方法包括以下步骤:步骤一:对机器译文进行词语级翻译质量标注;步骤二:对源文和机器译文进行基于深度学习方法的翻译质量特征抽取;步骤三:进行混合粒度的句子级翻译质量估计模型的训练,通过训练目标计算误差,再通过梯度反向传播更新模型的参数。本发明提出了一种基于混合粒度的句子级机器翻译质量估计模型训练方法,该方法相对于传统方法的优势主要在于:经过基于混合粒度的模型训练之后,与单一粒度下的训练相比,引入词语级上的翻译质量信息能取得较好的提升。
-
公开(公告)号:CN110472253B
公开(公告)日:2022-10-25
申请号:CN201910754140.0
申请日:2019-08-15
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于混合粒度的句子级机器翻译质量估计模型训练方法,所述训练方法包括以下步骤:步骤一:对机器译文进行词语级翻译质量标注;步骤二:对源文和机器译文进行基于深度学习方法的翻译质量特征抽取;步骤三:进行混合粒度的句子级翻译质量估计模型的训练,通过训练目标计算误差,再通过梯度反向传播更新模型的参数。本发明提出了一种基于混合粒度的句子级机器翻译质量估计模型训练方法,该方法相对于传统方法的优势主要在于:经过基于混合粒度的模型训练之后,与单一粒度下的训练相比,引入词语级上的翻译质量信息能取得较好的提升。
-