-
公开(公告)号:CN110276144A
公开(公告)日:2019-09-24
申请号:CN201910560945.1
申请日:2019-06-26
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种垂直起降运载器气动参数在线辨识方法,所述方法在风洞数据的基础上,利用极大似然法对不同飞行条件下的气动参数进行辨识,再通过训练神经网络的方式建立运载器飞行条件和气动参数间的关系,以适应运载器气动参数随飞行条件变化的情况。本发明基于风洞数据和极大似然法进行气动参数辨识,风洞数据气动插值表得到的气动参数,可以为极大似然法辨识参数提供良好的初值;训练后的神经网络可以用于气动参数在线辨识,实时性好,具有良好的工程实用性。该方法解决了垂直起降运载器气动参数离线辨识中一组气动参数对应多种飞行条件与实际不符、运载器气动参数在线辨识实时性差的问题,可用于在线气动参数辨识。
-
公开(公告)号:CN110276144B
公开(公告)日:2020-05-05
申请号:CN201910560945.1
申请日:2019-06-26
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种垂直起降运载器气动参数在线辨识方法,所述方法在风洞数据的基础上,利用极大似然法对不同飞行条件下的气动参数进行辨识,再通过训练神经网络的方式建立运载器飞行条件和气动参数间的关系,以适应运载器气动参数随飞行条件变化的情况。本发明基于风洞数据和极大似然法进行气动参数辨识,风洞数据气动插值表得到的气动参数,可以为极大似然法辨识参数提供良好的初值;训练后的神经网络可以用于气动参数在线辨识,实时性好,具有良好的工程实用性。该方法解决了垂直起降运载器气动参数离线辨识中一组气动参数对应多种飞行条件与实际不符、运载器气动参数在线辨识实时性差的问题,可用于在线气动参数辨识。
-