-
公开(公告)号:CN101893704A
公开(公告)日:2010-11-24
申请号:CN201010231397.7
申请日:2010-07-20
Applicant: 哈尔滨工业大学
Abstract: 一种基于粗糙集的雷达辐射源信号识别方法,它涉及信号识别技术领域,它解决了现有的利用粗糙K-均值方法识别雷达辐射源信号时,由于需要计算最小平方和来确定最优初始聚类中心而导致计算量大的问题。本发明的雷达辐射源信号识别方法首先获取雷达辐射源信号样本的脉冲描述字,然后利用粗糙集理论确定粗糙K-均值的聚类数和初始聚类中心,再通过粗糙K-均值获取RBF神经网络隐层神经元的中心,以获得RBF神经网络结构;最后将待识别的雷达辐射源信号的样本描述字输入所述RBF神经网络,获取识别结果,完成雷达辐射源信号的识别。本发明适用于雷达辐射源信号识别。
-
公开(公告)号:CN101893704B
公开(公告)日:2012-07-25
申请号:CN201010231397.7
申请日:2010-07-20
Applicant: 哈尔滨工业大学
Abstract: 一种基于粗糙集的雷达辐射源信号识别方法,它涉及信号识别技术领域,它解决了现有的利用粗糙K-均值方法识别雷达辐射源信号时,由于需要计算最小平方和来确定最优初始聚类中心而导致计算量大的问题。本发明的雷达辐射源信号识别方法首先获取雷达辐射源信号样本的脉冲描述字,然后利用粗糙集理论确定粗糙K-均值的聚类数和初始聚类中心,再通过粗糙K-均值获取RBF神经网络隐层神经元的中心,以获得RBF神经网络结构;最后将待识别的雷达辐射源信号的样本描述字输入所述RBF神经网络,获取识别结果,完成雷达辐射源信号的识别。本发明适用于雷达辐射源信号识别。
-