一种基于视觉惯性系统和置信度指导的无监督深度补全方法和系统

    公开(公告)号:CN116703967A

    公开(公告)日:2023-09-05

    申请号:CN202310398539.6

    申请日:2023-04-14

    Abstract: 一种基于视觉惯性系统和置信度指导的无监督深度补全方法和系统,涉及机器人计算机视觉技术领域。解决现有无监督深度补全方法网络参数复杂,不能广泛应用的问题。方法包括:采用视觉惯性系统获取图像、稀疏深度地图和相机姿态;建立非指导稠密深度补全网络,非指导稠密深度补全网络处理稀疏深度地图,获取置信度和非指导稠密深度地图;指导深度补全网络处理置信度和非指导稠密深度地图,获取指导稠密深度地图;运动残差网络处理指导稠密深度地图、图像和相机运动位姿,获取平移残差矩阵;损失函数训练指导深度补全网络,获取指导深度补全网络训练模型;损失函数训练运动残差网络,获取运动残差网络训练模型。应用于图像处理技术领域。

Patent Agency Ranking