-
公开(公告)号:CN112068549B
公开(公告)日:2022-12-16
申请号:CN202010789469.3
申请日:2020-08-07
Applicant: 哈尔滨工业大学
IPC: G05D1/02
Abstract: 本发明是一种基于深度强化学习的无人系统集群控制方法。本发明涉及无人系统集群控制技术领域,本发明为了解决现有无人系统集群控制方法环境适应性差的问题。本发明包括:在无人系统集群中,每个无人系统分别探测环境信息;将环境信息分为目标信息、障碍信息以及其他无人系统状态信息;对获得的信息分别进行标准化处理;将标准化处理的信息通过深度神经网络处理,得到选择动作的概率值;根据得到的概率值选择动作,观测新的环境信息并获得动作评价值;收集所有无人系统与环境交互的数据训练深度神经网络;利用训练好的深度神经网络进行无人系统集群控制。本发明用于无人系统集群控制技术领域。
-
公开(公告)号:CN112068549A
公开(公告)日:2020-12-11
申请号:CN202010789469.3
申请日:2020-08-07
Applicant: 哈尔滨工业大学
IPC: G05D1/02
Abstract: 本发明是一种基于深度强化学习的无人系统集群控制方法。本发明涉及无人系统集群控制技术领域,本发明为了解决现有无人系统集群控制方法环境适应性差的问题。本发明包括:在无人系统集群中,每个无人系统分别探测环境信息;将环境信息分为目标信息、障碍信息以及其他无人系统状态信息;对获得的信息分别进行标准化处理;将标准化处理的信息通过深度神经网络处理,得到选择动作的概率值;根据得到的概率值选择动作,观测新的环境信息并获得动作评价值;收集所有无人系统与环境交互的数据训练深度神经网络;利用训练好的深度神经网络进行无人系统集群控制。本发明用于无人系统集群控制技术领域。
-