一种基于深度学习的ECG心电信号生成方法

    公开(公告)号:CN111419213A

    公开(公告)日:2020-07-17

    申请号:CN202010167627.1

    申请日:2020-03-11

    Abstract: 一种基于深度学习的ECG心电信号生成方法,涉及一种ECG心电信号生成技术,为了解决现有带标签的ECG心电信号数据库数据量不足以及数据质量不齐,无法为ECG预测心脏疾病算法提供足够有效的训练数据的问题。本发明通过从数据库中筛选获取原始带标注的ECG心电信号,对ECG心电信号进行数据预处理;使用短时傅里叶变换将经过预处理的ECG心电信号转化成二维信号;使用改进的生成对抗网络对二维信号进行训练,并生成新的二维ECG心电信号时频图谱;使用Griffin Lim相位重构算法还原二维ECG心电信号时频图谱,得到自动生成的一维ECG心电信号。有益效果为极大的扩充ECG心电信号数据库,从而推动心电疾病诊断算法的发展,最终为临床心脏疾病诊断提供有效的辅助和支持。

    基于深度卷积神经网络的房颤检测的实现方法

    公开(公告)号:CN107203692A

    公开(公告)日:2017-09-26

    申请号:CN201710321707.6

    申请日:2017-05-09

    Abstract: 本发明公开了一种基于深度卷积神经网络的房颤检测的实现方法,该方法能够将单导联一维心电数据经过信号转换变成二维形式,使得其适用于处理二维数据的深度卷积神经网络,从而实现通过机器自动学习特征并进行分类,并最终实现房颤的自动化检测。将本发明的方法用于房颤检测时,无需检测P波或R‑R间期,也无需人为设计特征,极大地提高了房颤检测的效率和准确率,其中:基于静态小波变换结合深度卷积神经网络的房颤检测方法的准确率是98.63%,敏感性是98.79%,特异性是97.87%;基于短时傅里叶变换结合深度卷积神经网络的房颤检测方法的准确率是98.29%,敏感性是98.34%,特异性是98.24%。

    基于深度卷积神经网络的心电数据数字信号处理方法

    公开(公告)号:CN107203692B

    公开(公告)日:2020-05-05

    申请号:CN201710321707.6

    申请日:2017-05-09

    Abstract: 本发明公开了一种基于深度卷积神经网络的心电数据数字信号处理方法,该方法能够将单导联一维心电数据经过信号转换变成二维形式,使得其适用于处理二维数据的深度卷积神经网络。将本发明的方法用于房颤检测时,无需检测P波或R‑R间期,也无需人为设计特征,极大地提高了房颤检测的效率和准确率,其中:基于静态小波变换结合深度卷积神经网络的房颤检测方法的准确率是98.63%,敏感性是98.79%,特异性是97.87%;基于短时傅里叶变换结合深度卷积神经网络的房颤检测方法的准确率是98.29%,敏感性是98.34%,特异性是98.24%。

Patent Agency Ranking