-
公开(公告)号:CN103324700B
公开(公告)日:2017-02-01
申请号:CN201310229229.8
申请日:2013-06-08
Applicant: 同济大学
IPC: G06F17/30
Abstract: 本发明涉及本体学习领域,特别涉及到基于Web信息的本体概念属性学习方法。本发明的技术方案是以Web作为语料库,构建语言模式并作为Google搜索引擎的查询集合,进行网页片段和对应的源网址URL提取,以构建候选概念属性词库;根据候选词的URL构建文本集作为LDA的输入,采用Gibbs抽样的方法来获取LDA模型的训练参数,根据LDA模型的运行结果修剪和合并属性候选库,确立最终的概念属性词集。本发明能够更加准确有效地获取本体中的概念属性集合,从而使得自动或半自动构建本体成为可能。
-
公开(公告)号:CN103207856B
公开(公告)日:2015-10-28
申请号:CN201310114031.5
申请日:2013-04-03
Applicant: 同济大学
IPC: G06F17/27
Abstract: 本发明涉及本体学习领域,特别涉及到一种本体概念及层次关系生成方法。本发明的技术方案是将PAM概率主题模型应用于本体概念及层次的抽取,改进本体概念及层次关系学习的效果,以达到更加准确有效地生成本体概念。该方法首先通过建立基于PAM的本体概念及层次生成模型,将领域本体概念学习问题有效地转化为基于领域文档集的统计推断问题,采用Gibbs抽样的方法来获取概率分布特征向量;然后进行基于Wordnet的语义相似度计算,根据相似度关联关系生成概念,从而得到本体概念的集合及其层次关系。本发明能够更加准确有效地获取领域本体中的概念集合及概念间层次关系。
-
公开(公告)号:CN103324700A
公开(公告)日:2013-09-25
申请号:CN201310229229.8
申请日:2013-06-08
Applicant: 同济大学
IPC: G06F17/30
Abstract: 本发明涉及本体学习领域,特别涉及到基于Web信息的本体概念属性学习方法。本发明的技术方案是以Web作为语料库,构建语言模式并作为Google搜索引擎的查询集合,进行网页片段和对应的源网址URL提取,以构建候选概念属性词库;根据候选词的URL构建文本集作为LDA的输入,采用Gibbs抽样的方法来获取LDA模型的训练参数,根据LDA模型的运行结果修剪和合并属性候选库,确立最终的概念属性词集。本发明能够更加准确有效地获取本体中的概念属性集合,从而使得自动或半自动构建本体成为可能。
-
公开(公告)号:CN103207856A
公开(公告)日:2013-07-17
申请号:CN201310114031.5
申请日:2013-04-03
Applicant: 同济大学
IPC: G06F17/27
Abstract: 本发明涉及本体学习领域,特别涉及到一种本体概念及层次关系生成方法。本发明的技术方案是将PAM概率主题模型应用于本体概念及层次的抽取,改进本体概念及层次关系学习的效果,以达到更加准确有效地生成本体概念。该方法首先通过建立基于PAM的本体概念及层次生成模型,将领域本体概念学习问题有效地转化为基于领域文档集的统计推断问题,采用Gibbs抽样的方法来获取概率分布特征向量;然后进行基于Wordnet的语义相似度计算,根据相似度关联关系生成概念,从而得到本体概念的集合及其层次关系。本发明能够更加准确有效地获取领域本体中的概念集合及概念间层次关系。
-
-
-